427
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Jute and Luffa Fiber-Reinforced Biocomposites: Effects of Sample Thickness and Fiber/Resin Ratio on Sound Absorption and Transmission Loss Performance

ORCID Icon, , ORCID Icon &

References

  • Alhijazi, M., B. Safaei, Q. Zeeshan, M. Asmael, A. Eyvazian, and Z. Qin. 2020. Recent developments in luffa natural fiber composites: Review. Sustainability 12 (18):7683. doi:10.3390/su12187683.
  • Allard, J. F., and Y. Champoux. 1992. New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America 91 (6):3346–53. doi:10.1121/1.402824.
  • Arenas, J. P., R. Del Rey, J. Alba, and R. Oltra. 2020. Sound-absorption properties of materials made of esparto grass fibers. Sustainability 12 (14):5533. doi:10.3390/su12145533.
  • Asdrubali, F., S. Schiavoni, and K. V. Horoshenkov. 2012. A review of sustainable materials for acoustic applications. Building Acoustics 19 (4):283–311. doi:10.1260/1351-010x.19.4.283.
  • ASTM E1050–12. 2012. Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system. PA: ASTM International. www.astm.org.
  • ASTM E2611-17. 2017. Standard test method for normal incidence determination of porous material acoustical properties based on the transfer matrix method. PA: ASTM International. www.astm.org.
  • Bansod, P. V., T. Mittal, and A. R. Mohanty. 2016. Study on the acoustical properties of natural jute material by theoretical and experimental methods for building acoustics applications. Acoustics Australia 44:457–72. doi:10.1007/s40857-016-0073-4.
  • Berardi, U., and G. Iannace. 2015. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 94:840–52. doi:10.1016/j.buildenv.2015.05.029.
  • Berardi, U., and G. Iannace. 2017. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Applied Acoustics 115:131–38. doi:10.1016/j.apacoust.2016.08.012.
  • Berardi, U., G. Iannace, and M. Di Gabriele. 2017. The acoustic characterization of broom fibers. Journal of Natural Fibers 14 (6):858–63. doi:10.1080/15440478.2017.1279995.
  • Bevitori, A. B., I. L. A. Da Silva, F. P. D. Lopes, and S. N. Monteiro. 2010. Diameter dependence of tensile strength by Weibull analysis: Part II jute fiber. Revista Matéria 15 (2):117–23. doi:10.1590/S1517-70762010000200005.
  • Bhingare, N. H., and S. Prakash. 2020. An experimental and theoretical investigation of coconut coir material for sound absorption characteristics. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.09.401.
  • Chen, Y., and N. Jiang. 2009. Carbonized and activated non-woven as high performance acoustic materials: Part II noise insulation. Textile Research Journal 79 (3):213–18. doi:10.1177/0040517508093593.
  • Cuthbertson, D., U. Berardi, C. Briens, and F. Berruti. 2019. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass & Bioenergy 120:77–83. doi:10.1016/j.biombioe.2018.11.007.
  • Da Silva, C. C. B., F. J. H. Terashima, N. Barbieri, and K. F. De Lima. 2019. Sound absorption coefficient assessment of sisal, coconut husk and sugar cane fibers for low frequencies based on three different methods. Applied Acoustics 156:92–100. doi:10.1016/j.apacoust.2019.07.001.
  • Delany, M. E., and E. N. Bazley. 1970. Acoustical properties of fibrous absorbent materials. Applied Acoustics 3 (2):105–16. doi:10.1016/0003-682X(70)90031-9.
  • Dunn, J. P., and W. A. Davern. 1986. Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics 19 (5):321–34. doi:10.1016/0003-682X(86)90044-7.
  • Fatima, S., and A. R. Mohanty. 2011. Acoustical and fire-retardant properties of jute composite materials. Applied Acoustics 72 (2–3):108–14. doi:10.1016/j.apacoust.2010.10.005.
  • Fouladi, M. H., M. Ayub, and M. J. Mohd Nor. 2011. Analysis of coir fiber acoustical characteristics. Applied Acoustics 72 (1):35–42. doi:10.1016/j.apacoust.2010.09.007.
  • Fu, S. Y., B. Lauke, E. Mäder, C. Y. Yue, and X. Hu. 2000. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites Part A: Applied Sciences and Manufacturing 31 (10):1117–25. doi:10.1016/S1359-835X(00)00068-3.
  • Genc, G., and H. Koruk. 2017. Identification of the dynamic characteristics of luffa fiber reinforced bio-composite plates. BioResources 12 (3):5358–68. doi:10.15376/biores.12.3.5358-5368.
  • Ho, M., H. Wang, J. Lee, C.-K. Ho, K. Lau, J. Leng, and D. Hui. 2012. Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering 43 (8):3549–62. doi:10.1016/j.compositesb.2011.10.001.
  • Johnson, D. L., J. Koplik, and R. Dashen. 1987. Theory of dynamic permeability and tortuosity in fluid saturated porous media. Journal of Fluid Mechanics 176:379–402. doi:10.1017/S0022112087000727.
  • Joshi, S. V., L. T. Drzal, A. K. Mohanty, and S. Arora. 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites. Part A, Applied Science and Manufacturing 35 (3):371–76. doi:10.1016/j.compositesa.2003.09.016.
  • Jung, S. S., Y. T. Kim, Y. B. Lee, S. I. Cho, and J. K. Lee. 2008. Measurement of sound transmission loss by using impedance tubes. Journal of the Korean Physical Society 53 (2):596–600. doi:10.3938/jkps.53.596.
  • Kino, N. 2015. Further investigations of empirical improvements to the Johnson–Champoux–Allard model. Applied Acoustics 96:153–70. doi:10.1016/j.apacoust.2015.03.024.
  • Kino, N., and T. Ueno. 2008. Comparisons between characteristic lengths and fibre equivalent diameters in glass fibre and melamine foam materials of similar flow resistivity. Applied Acoustics 69 (4):325–31. doi:10.1016/j.apacoust.2006.11.008.
  • Koruk, H. 2014. An assessment of the performance of impedance tube method. Noise Control Engineering Journal 62 (4):264–74. doi:10.3397/1/376226.
  • Koruk, H., and G. Genc. 2019. Acoustic and mechanical properties of luffa fiber-reinforced biocomposites. In Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, ed. M. Jawaid, M. Thariq, and N. Saba, 325–41. Duxford: Woodhead Publishing.
  • Koruk, H. 2021. Assessment of the measurement and prediction methods for the acoustic properties of natural fiber samples and evaluation of their properties. Journal of Natural Fibers. doi:10.1080/15440478.2021.1907835
  • Koruk, H., and G. Genc. 2015. Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials Letters 157:166–68. doi:10.1016/j.matlet.2015.05.071.
  • Le, T., A. Gacoin, A. Li, T. H. Mai, and N. El Wakil. 2015. Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials. Composites Part B: Engineering 75:201–11. doi:10.1016/j.compositesb.2015.01.038.
  • Li, M., Y. Pu, V. M. Thomas, C. G. Yoo, S. Ozcan, Y. Deng, K. Nelson, and A. J. Ragauskas. 2020. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering 200:108254. doi:10.1016/j.compositesb.2020.108254.
  • Li, Z., L. Wang, Y. Li, Y. Feng, and W. Feng. 2019. Carbon-based functional nanomaterials: Preparation, properties and applications. Composites Science and Technology 179:10–40. doi:10.1016/j.compscitech.2019.04.028.
  • Liao, J., S. Zhang, and X. Tang. 2020. Sound absorption of hemp fibers (Cannabis Sativa L.) based nonwoven fabrics and composites: A review. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2020.1764453.
  • Lim, Z. Y., A. Putra, M. J. M. Nor, and M. Y. Yaakob. 2018. Sound absorption performance of natural kenaf fibres. Applied Acoustics 130:107–14. doi:10.1016/j.apacoust.2017.09.012.
  • Liu, X., X. Yan, L. Li, and H. Zhang. 2015. Sound-absorption properties of kapok fiber nonwoven fabrics at low frequency. Journal of Natural Fibers 12 (4):311–22. doi:10.1080/15440478.2014.919891.
  • Mat Tahir, M. F., M. H. Nawi, R. Zulkifli, A. K. Elwaleed, and S. M. Mat Yunoh. 2018. The effect of thickness and density on the acoustics properties of Ceiba pentandra natural fiber. ARPN Journal of Engineering and Applied Sciences 13 (9):3214–18.
  • Miki, Y. 1990. Acoustical properties of porous materials-modifications of Delany-Bazley models-. The Journal of the Acoustical Society of Japan 11 (1):19–24. doi:10.1250/ast.11.19.
  • Norton, M. P., and D. G. Karczub. 2003. Fundamentals of noise and vibration analysis for engineers. 2nd ed. Cambridge: Cambridge University Press.
  • Or, K. H., A. Putra, and M. Z. Selamet. 2017. Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Applied Acoustics 119:9–16. doi:10.1016/j.apacoust.2016.12.002.
  • Perumal, C. I., R. Sarala, D. R. Muthuraja, and R. Senthilraja. 2018. A review on characteristic of polymer composites with natural fiber used as a reinforcement material. International Journal for Research in Applied Science & Engineering Technology 6 (1):1213–17. doi:10.22214/ijraset.2018.1184.
  • Prascevic, M., D. Cvetkovic, and D. Mihajlov. 2012. Comparasion of prediction and measurement methods for sound insulation of lightweight partitions. Facta Universitatis - Series: Architecture and Civil Engineering 10 (2):155–67. doi:10.2298/FUACE1202155P.
  • Raj, M., S. Fatima, and N. Tandon. 2020. Recycled materials as a potential replacement to synthetic sound absorbers: A study on denim shoddy and waste jute fibers. Applied Acoustics 159:107070. doi:10.1016/j.apacoust.2019.107070.
  • Ramesh, M., K. Palanikumar, and K. H. Reddy. 2013. Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites. Composites Part B: Engineering 48:1–9. doi:10.1016/j.compositesb.2012.12.004.
  • Rudder, J. F. F. 1985. Airborne sound transmission loss characteristics of wood-frame construction. Gen Tech Rep FPL-43. Madison, WI: USDA.
  • Saygili, Y., G. Genc, K. Y. Sanliturk, and H. Koruk. 2020. Investigation of the acoustic and mechanical properties of homogenous and hybrid jute and luffa bio composites. Journal of Natural Fibers 1–9. doi:10.1080/15440478.2020.1764446.
  • Sengupta, S., G. Basu, M. Datta, S. Debnath, and D. Nath. 2020. Noise control material using jute (Corchorus olitorius): Effect of bulk density and thickness. The Journal of the Textile Institute. doi:10.1080/00405000.2020.1744222.
  • Suardana, N. P. G., I. K. G. Sugita, and I. G. N. Wardana. 2020. Hybrid acoustic panel: The effect of fiber volume fraction and panel thickness. Materials Physics and Mechanics 44:77–82. doi:10.18720/MPM.4412020_9.
  • Taban, E., P. Soltani, U. Berardi, A. Putra, S. M. Mousavi, M. Faridan, S. E. Samaei, and A. Khavanin. 2020. Measurement, modeling, and optimization of sound absorption performance of kenaf fibers for building applications. Building and Environment 180:107087. doi:10.1016/j.buildenv.2020.107087.
  • Tadeu, A. J. B., and D. M. R. Mateus. 2001. Sound transmission through single, double and triple glazing: Experimental evaluation. Applied Acoustics 62 (3):307–25. doi:10.1016/S0003-682X(00)00032-3.
  • Tang, X., and X. Yan. 2017. Acoustic energy absorption properties of fibrous materials: A review. Composites. Part A, Applied Science and Manufacturing 101:360–80. doi:10.1016/j.compositesa.2017.07.002.
  • Tanobe, V. O. A., T. H. D. Sydenstricker, M. Munaro, and S. C. Amico. 2005. A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polymer Testing 24 (4):474–82. doi:10.1016/j.polymertesting.2004.12.004.
  • Thilagavathi, G., S. Neela Krishnan, N. Muthukumar, and S. Krishnan. 2018. Investigations on sound absorption properties of luffa fibrous mats. Journal of Natural Fibers 15 (3):445–51. doi:10.1080/15440478.2017.1349016.
  • Wang, X., F. You, F. S. Zhang, J. Li, and S. Guo. 2011. Experimental and theoretic studies on sound transmission loss of laminated mica-filled poly(vinyl chloride) composites. Journal of Applied Polymer Science 122 (2):1427–33. doi:10.1002/app.34047.
  • Xiang, H.-F., D. Wang, H.-C. Liu, N. Zhao, and J. Xu. 2013. Investigation on sound absorption properties of kapok fibers. Chinese Journal of Polymer Science 31 (3):521–29. doi:10.1007/s10118-013-1241-8.
  • Yang, W., and Y. Li. 2012. Sound absorption performance of natural fibers and their composites. Science China-Technological Sciences 55 (8):2278–83. doi:10.1007/s11431-012-4943-1.
  • Zakriya, G. M., and G. Ramakrishnan. 2019. Jute and hollow conjugated polyester composites for outdoor & indoor insulation applications. Journal of Natural Fibers 16 (2):185–98. doi:10.1080/15440478.2017.1410515.
  • Zhang, Z., S. Cai, Y. Li, Z. Wang, Y. Long, T. Yu, and Y. Shen. 2020. High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Composites Science and Technology 194 (108151):108151. doi:10.1016/j.compscitech.2020.108151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.