494
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Assessment of the Measurement and Prediction Methods for the Acoustic Properties of Natural Fiber Samples and Evaluation of Their Properties

ORCID Icon

References

  • Alhijazi, M., Q. Zeeshan, Z. Qin, B. Safaei, and M. Asmael. 2020. Finite element analysis of natural fibers composites: A review. Nanotechnology Reviews 9 (1):853–75. doi:10.1515/ntrev-2020-0069.
  • Allard, J.-F., and N. Attala. 2009. Propagation of sound in porous media: Modelling sound absorbing materials. 2nd ed ed. Hoboken, NJ: Wiley & Sons Ltd.
  • Allard, J.-F., and Y. Champoux. 1992. New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America 91 (6):3346–53. doi:10.1121/1.402824.
  • Arenas, J. P., R. Del Rey, J. Alba, and R. Oltra. 2020. Sound-absorption properties of materials made of esparto grass fibers. Sustainability 12 (14):5533. doi:10.3390/su12145533.
  • ASTM (American Society for Testing and Materials). 2016. ASTM E90-09(2016) Standard test method for laboratory measurement of airborne sound transmission loss of building partitions and elements.
  • ASTM (American Society for Testing and Materials). 2017. ASTM C423-17 Standard test method for sound absorption and sound absorption coefficients by the reverberation room method.
  • ASTM (American Society for Testing and Materials). 2019a. ASTM E1050-19 Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system.
  • ASTM (American Society for Testing and Materials). 2019b. ASTM E2611-19 Standard test method for normal incidence determination of porous material acoustical properties based on the transfer matrix method.
  • Bansod, P. V., T. Mittal, and A. R. Mohanty. 2016. Study on the acoustical properties of natural jute material by theoretical and experimental methods for building acoustics applications. Acoustics Australia 47 (3):457–72. doi:10.1007/s40857-016-0073-4.
  • Bansod, P. V., and A. R. Mohanty. 2016. Inverse acoustical characterization of natural jute sound absorbing material by the particle swarm optimization method. Applied Acoustics 112:41–52. doi:10.1016/j.apacoust.2016.05.011.
  • Berardi, U., and G. Iannace. 2015. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 94:840–52. doi:10.1016/j.buildenv.2015.05.029.
  • Berardi, U., and G. Iannace. 2017. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Applied Acoustics 115:131–38. doi:10.1016/j.apacoust.2016.08.012.
  • Berardi, U., G. Iannace, and M. Di Gabriele. 2017. The acoustic characterization of broom fibers. Journal of Natural Fibers 14 (6):858–63. doi:10.1080/15440478.2017.1279995.
  • Bhingare, N. H., and S. Prakash. 2020. An experimental and theoretical investigation of coconut coir material for sound absorption characteristics. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.09.401.
  • Bhingare, N. H., S. Prakash, and S. J. Vijaykumar. 2019. A review on natural and waste material composite as acoustic material. Polymer Testing 80:106142. doi:10.1016/j.polymertesting.2019.106142.
  • Bolton, J. S., T. Yoo, and O. Olivieri. 2007. Measurement of normal incidence transmission loss and other acoustical properties of materials placed in a standing wave tube. Denmark: Brüel & Kjær.
  • Champoux, Y., and J.-F. Allard. 1991. Dynamic tortuosity and bulk modulus in air-saturated porous media. Journal of Applied Physics 70 (4):1975–79. doi:10.1063/1.349482.
  • Chen, Y., and N. Jiang. 2009. Carbonized and activated non-woven as high performance acoustic materials: Part II noise insulation. Textile Research Journal 79 (3):213–18. doi:10.1177/0040517508093593.
  • Cox, T. J., and P. D’Antonio. 2004. Acoustic absorbers and diffusers: Theory, design and application. London, UK: Spon Press.
  • Da Silva, C. C. B., F. J. H. Terashima, N. Barbieri, and K. F. De Lima. 2019. Sound absorption coefficient assessment of sisal, coconut husk and sugar cane fibers for low frequencies based on three different methods. Applied Acoustics 156:92–100. doi:10.1016/j.apacoust.2019.07.001.
  • Das, O., R. E. Neisiany, A. J. Capezza, M. S. Hedenqvist, M. Försth, Q. Xu, L. Jiang, D. Ji, and S. Ramakrishna. 2020. The need for fully bio-based facemasks to counter coronavirus outbreaks: A perspective. Science of the Total Environment 736:139611. doi:10.1016/j.scitotenv.2020.139611.
  • Delany, M. E., and E. N. Bazley. 1970. Acoustical properties of fibrous absorbent materials. Applied Acoustics 3 (2):105–16. doi:10.1016/0003-682X(70)90031-9.
  • Dragonetti, R., M. Napolitano, L. Boccarusso, and M. Durante. 2020. A study on the sound transmission loss of a new lightweight hemp/bio-epoxy sandwich structure. Applied Acoustics 167:107379. doi:10.1016/j.apacoust.2020.107379.
  • Dunn, J. P., and W. A. Davern. 1986. Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics 19 (5):321–34. doi:10.1016/0003-682X(86)90044-7.
  • Fouladi, M. H., M. Ayub, and M. J. M. Nor. 2011. Analysis of coir fiber acoustical characteristics. Applied Acoustics 72 (1):35–42. doi:10.1016/j.apacoust.2010.09.007.
  • Garai, M., and F. Pompoli. 2005. A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics 66 (12):1383–98. doi:10.1016/j.apacoust.2005.04.008.
  • Gokulkumar, S., P. R. Thyla, L. Prabhu, and S. Sathish. 2020. Measuring methods of acoustic properties and influence of physical parameters on natural fibers: A review. Journal of Natural Fibers 17 (12):1719–38. doi:10.1080/15440478.2019.1598913.
  • Gurunathan, T., S. Mohanty, and S. K. Nayak. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites: Part A 77:1–25. doi:10.1016/j.compositesa.2015.06.007.
  • ISO (International Organization for Standardization). 1993. ISO 9613-1:1993 Acoustics - Attenuation of sound during propagation outdoors - Part 1: Calculation of the absorption of sound by the atmosphere.
  • ISO (International Organization for Standardization). 1998. ISO 10534-2:1998 Acoustics - Determination of sound absorption coefficient and impedance in impedance tubes - Part 2: Transfer-function method.
  • ISO (International Organization for Standardization). 2000. ISO 15186-1:2000 Acoustics - Measurement of sound insulation in buildings and of building elements using sound intensity - Part 1: Laboratory measurements.
  • ISO (International Organization for Standardization). 2003. ISO 354:2003 Acoustics - Measurement of sound absorption in a reverberation room.
  • Johnson, D. L., J. Koplik, and R. Dashen. 1987. Theory of dynamic permeability and tortuosity in fluid saturated porous media. Journal of Fluid Mechanics 176:379–402. doi:10.1017/S0022112087000727.
  • Jung, S. J., Y. T. Kim, Y. B. Lee, S. I. Cho, and J. K. Lee. 2008. Measurement of sound transmission loss by using impedance tubes. Journal of the Korean Physical Society 53 (2):596:600. doi:10.3938/jkps.53.596.
  • Kalauni, K., and S. J. Pawar. 2019. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. Journal of Porous Materials 26 (6):1795–819. doi:10.1007/s10934-019-00774-2.
  • Kesharwani, A. R., A. K. B. Bedi, and S. Bahl. 2020. Experimental study to measure the sound transmission loss of natural fibers at tonal excitations. Materials Today: Proceedings. International Conference on Aspects of Materials Science and Engineering. Chandigarh, India. doi: 10.1016/j.matpr.2020.04.839.
  • Kino, N. 2015. Further investigations of empirical improvements to the Johnson–Champoux–Allard model. Applied Acoustics 96:153–70. doi:10.1016/j.apacoust.2015.03.024.
  • Kino, N., and T. Ueno. 2008. Comparisons between characteristic lengths and fibre equivalent diameters in glass fibre and melamine foam materials of similar flow resistivity. Applied Acoustics 69 (4):325–31. doi:10.1016/j.apacoust.2006.11.008.
  • Komatsu, T. 2008. Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials. Acoustical Science and Technology 29 (2):121–29. doi:10.1250/ast.29.121.
  • Koruk, H. 2014. An assessment of the performance of impedance tube method. Noise Control Engineering Journal 62 (4):264–74. doi:10.3397/1/376226.
  • Koruk, H., and G. Genc. 2015. Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials Letters 157:166–68. doi:10.1016/j.matlet.2015.05.071.
  • Lafarge, D., P. Lemarinier, J.-F. Allard, and V. Tarnow. 1997. Dynamic compressibility of air in porous structures at audible frequencies. The Journal of the Acoustical Society of America 102 (4):1995–2006. doi:10.1121/1.419690.
  • Lai, J. C. S., and M. Burgess. 1991. Application of the sound intensity technique to measurement of field sound transmission loss. Applied Acoustics 34 (2):77–87. doi:10.1016/0003-682X(91)90023-8.
  • Lalit, R., P. Mayank, and K. Ankur. 2018. Natural fibers and biopolymers characterization: A future potential composite material. Journal of Mechanical Engineering 68 (1):33–50. doi:10.2478/scjme-2018-0004.
  • Liao, J., S. Zhang, and X. Tang. 2020. Sound absorption of hemp fibers (cannabis sativa L.) based nonwoven fabrics and Composites: A review. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2020.1764453.
  • Liuzzi, S., C. Rubino, P. Stefanizzi, and F. Martellotta. 2020. Performance characterization of broad band sustainable sound absorbers made of almond skins. Materials 13 (23):5474. doi:10.3390/ma13235474.
  • Mamtaz, H., M. H. Fouladi, M. Al-Atabi, and S. N. Namasivayam. 2016. Acoustic absorption of natural fiber composites. Journal of Engineering 5836107. doi:10.1155/2016/5836107.
  • Mechel, F. P. 2008. Formulas of acoustics. Berlin: Springer-Verlag.
  • Miki, Y. 1990. Acoustical properties of porous materials —modifications of Delany-Bazley models-. Journal of the Acoustical Society of Japan (E) 11 (1):19–24. doi:10.1250/ast.11.19.
  • Moussatov, A., C. Ayrault, and B. Castagnede. 2001. Porous material characterization - ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber. Ultrasonics 39 (3):195–202. doi:10.1016/S0041-624X(00)00062-7.
  • Norton, M. P., and D. G. Karczub. 2003. Fundamentals of noise and vibration analysis for engineers. 2nd ed ed. Cambridge, UK: Cambridge University Press.
  • Oldham, D. J., C. A. Egan, and R. D. Cookson. 2011. Sustainable acoustic absorbers from the biomass. Applied Acoustics 72 (6):350–63. doi:10.1016/j.apacoust.2010.12.009.
  • Progneaux, A., P. Bouillard, and A. Deraemaeker. 2015. A model updating technique based on the constitutive relation error for in situ identification of admittance coefficient of sound absorbing materials. Journal of Vibration and Acoustics 137 (5):051013. doi:10.1115/1.4030662.
  • Raj, M., S. Fatima, and N. Tandon. 2020. An experimental and theoretical study on environment-friendly sound absorber sourced from nettle fibers. Journal of Building Engineering 31:101395. doi:10.1016/j.jobe.2020.101395.
  • Sambu, M., M. N. Yahya, H. A. Latif, M. A. B. Roslan, and M. I. B. Ghazali. 2016. Influence of physical properties on the acoustical performance of the oil palm frond natural fibre. ARPN Journal of Engineering and Applied Sciences 11 (10):6458:64.
  • Santoni, A., P. Bonfiglio, P. Fausti, C. Marescotti, V. Mazzanti, F. Mollica, and F. Pompoli. 2019. Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres. Applied Acoustics 150:279–89. doi:10.1016/j.apacoust.2019.02.022.
  • Shtrepi, L., and A. Prato. 2020. Towards a sustainable approach for sound absorption assessment of building materials: Validation of small-scale reverberation room measurements. Applied Acoustics 165:107304. doi:10.1016/j.apacoust.2020.107304.
  • Steffens, F., H. Steffens, and F. R. Oliveira. 2017. Applications of natural fibers on architecture. Procedia Engineering 200:317–24. doi:10.1016/j.proeng.2017.07.045.
  • Sydow, Z., and K. Bienczak. 2018. The overview on the use of natural fibers reinforced composites for food packaging. Journal of Natural Fibers 16 (8):1189–200. doi:10.1080/15440478.2018.1455621.
  • Taban, E., A. Khavanin, A. J. Jafari, M. Faridan, and A. K. Tabrizi. 2019b. Experimental and mathematical survey of sound absorption performance of date palm fibers. Heliyon 5 (6):e01977. doi:10.1016/j.heliyon.2019.e01977.
  • Taban, E., A. Khavanin, A. Ohadi, A. Putra, A. J. Jafari, M. Faridan, and A. Soleimanian. 2019a. Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Building and Environment 161:106274. doi:10.1016/j.buildenv.2019.106274.
  • Taban, E., P. Soltani, U. Berardi, A. Putra, S. M. Mousavi, M. Faridan, S. E. Samaei, and A. Khavanin. 2020. Measurement, modeling, and optimization of sound absorption performance of kenaf fibers for building applications. Building and Environment 180:107087. doi:10.1016/j.buildenv.2020.107087.
  • Taban, E. A., T. M. Faridan, S. E. Samaei, and M. H. Beheshti. 2019c. Acoustic absorption characterization and prediction of natural coir fibers. Acoustics Australia 47 (1):67–77. doi:10.1007/s40857-019-00151-8.
  • Tadeu, A. J. B., and D. M. R. Mateus. 2001. Sound transmission through single, double and triple glazing. Experimental evaluation. Applied Acoustics 62 (3):307–25. doi:10.1016/S0003-682X(00)00032-3.
  • Tang, X., and X. Yan. 2017. Acoustic energy absorption properties of fibrous materials: A review. Composites: Part A 101:360–80. doi:10.1016/j.compositesa.2017.07.002.
  • Tarnow, V. 2002. Measured anisotropic air flow resistivity and sound attenuation of glass wool. The Journal of the Acoustical Society of America 111 (6):2735–39. doi:10.1121/1.1476686.
  • Wambua, P., J. Ivens, and I. Verpoest. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology 63 (9):1259–64. doi:10.1016/S0266-3538(03)00096-4.
  • Wang, C.-N., Y.-M. Kuo, and S.-K. Chen. 2008. Effects of compression on the sound absorption of porous materials with an elastic frame. Applied Acoustics 69 (1):31–39. doi:10.1016/j.apacoust.2006.08.006.
  • Wang, X., F. You, F. S. Zhang, J. Li, and S. Guo. 2011. Experimental and theoretic studies on sound transmission loss of laminated mica-filled poly(vinyl chloride) composites. Journal of Applied Polymer Science 122 (2):1427–33. doi:10.1002/app.34047.
  • Wibisono, Y., C. R. Fadila, S. Saiful, and M. R. Bilad. 2020. Facile approaches of polymeric face masks reuse and reinforcements for micro-aerosol droplets and viruses filtration: A review. Polymers 12 (11):2516. doi:10.3390/polym12112516.
  • Xiang, H.-F., D. Wang, H.-C. Liu, N. Zhao, and J. Xu. 2013. Investigation on sound absorption properties of kapok fibers. Chinese Journal of Polymer Science 31 (3):521–29. doi:10.1007/s10118-013-1241-8.
  • Yang, T., L. Hu, X. Xiong, M. Petru, M. T. Noman, R. Mishra, and J. Militky. 2020. Sound absorption properties of natural fibers: A review. Sustainability 12 (20):8477. doi:10.3390/su12208477.
  • Yang, W., and L. Yan. 2012. Sound absorption performance of natural fibers and their composites. Science China-Technological Sciences 55 (8):2278:83. doi:10.1007/s11431-012-4943-1.
  • Zhu, X. D., B. J. Kim, Q. W. Wang, and Q. L. Wu. 2014. Recent advances in the sound insulation properties of bio-based materials. Bioresources 9:1764–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.