146
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Utilization and Study of Raw Groundnut Shell as a Source of Sound Absorbing Material

, , &

References

  • Abdullah, Y., A. Putra, H. Effendy, W. M. Farid, and M. R. Ayob 2011. Investigation on natural waste fibers from dried paddy straw as a sustainable acoustic absorber. In 2011 IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, pp. (311–14). IEEE. 10.1109/CET.2011.6041482
  • Arun Ramnath, R., P. R. Thyla, N. Mahendra Kumar, and S. Aravind. 2018. Optimization of machining parameters of composites using multi-attribute decision-making techniques: A review. Journal of Reinforced Plastics and Composites 37 (2):77–89. doi:10.1177/0731684417732840.
  • Asdrubali, F., S. Schiavoni, and K. V. Horoshenkov. 2012. A review of sustainable materials for acoustic applications. Building Acoustics 19 (4):283–311. doi:10.1260/1351-010X.19.4.283.
  • Berardi, U., and G. Iannace. 2015. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 94:840–52. doi:10.1016/j.buildenv.2015.05.029.
  • Berardi, U., and G. Iannace. 2017. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Applied Acoustics 115:131–38. doi:10.1016/j.apacoust.2016.08.012.
  • Berardi, U., G. Iannace, and M. Di Gabriele. 2017. The acoustic characterization of broom fibers. Journal of Natural Fibers 14 (6):858–63. doi:10.1080/15440478.2017.1279995.
  • Berglund, B., P. Hassmen, and R. S. Job. 1996. Sources and effects of low‐frequency noise. The Journal of the Acoustical Society of America 99 (5):2985–3002. doi:10.1121/1.414863.
  • Bharthare, P., P. Shrivastava, P. Singh, and A. Ttiwari. 2014. Peanut shell as renewable energy source and their utility in production of ethanol. International Journal of Advance Research 4 (2):1–12.
  • Bhatt, S. M. 2014. Bioethanol production from economical agro waste (groundnut shell) in SSF mode. Research Journal of Pharmaceutical, Biological and Chemical Sciences 5 (6):1210–18.
  • Bujoreanu, C., F. Nedeff, M. Benchea, and M. Agop. 2017. Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Applied Acoustics 119 (119):88–93. doi:10.1016/j.apacoust.2016.12.010.
  • Cao, L., Q. Fu, Y. Si, B. Ding, and J. Yu. 2018. Porous materials for sound absorption. Composites Communications 10 (10):25–35. doi:10.1016/j.coco.2018.05.001.
  • Chung, J. Y., and D. A. Blaser. 1980. Transfer function method of measuring in‐duct acoustic properties. II. Experiment. The Journal of the Acoustical Society of America 68 (3):914–21. doi:10.1121/1.384779.
  • Cuiyun, D., C. Guang, X. Xinbang, and L. Peisheng. 2012. Sound absorption characteristics of a high-temperature sintering porous ceramic material. Applied Acoustics 73 (9):865–71. doi:10.1016/j.apacoust.2012.01.004.
  • Davern, W. A., and I. P. Dunn. 1986. Calculation of Acoustic Impedance of Multilayered Absorbers. Applied Acoustics (19)5:321–34.
  • Del Rey, R., A. Uris, J. Alba, and P. Candelas. 2017. Characterization of sheep wool as a sustainable material for acoustic applications. Materials 10 (11):1277. doi:10.3390/ma10111277.
  • Delany, M. E., and E. N. Bazley. 1970. Acoustical properties of fibrous absorbent materials. Applied Acoustics 3 (2):105–16. doi:10.1016/0003-682X(70)90031-9.
  • Duc, P. A., Dharanipriya, P., Velmurugan, B. K., & Shanmugavadivu, M. 2019. Groundnut shell-a beneficial bio-waste. Biocatalysis and Agricultural Biotechnology (20): 101206. https://doi.org/10.1016/jbcab.2019.101206
  • Duc, P. A., P. Dharanipriya, B. K. Velmurugan, and M. Shanmugavadivu. 2019. Groundnut shell-a beneficial bio-waste. Biocatalysis and Agricultural Biotechnology 20 (20):101206. doi:10.1016/j.bcab.2019.101206.
  • Fatima, S., and A. R. Mohanty. 2011. Acoustical and fire-retardant properties of jute composite materials. Applied Acoustics 72 (2–3):108–14. doi:10.1016/j.apacoust.2010.10.005.
  • Fouladi, M. H., M. Ayub, and M. J. M. Nor. 2011. Analysis of coir fiber acoustical characteristics. Applied Acoustics 72 (1):35–42. doi:10.1016/j.apacoust.2010.09.007.
  • Garai, M., and F. Pompoli. 2005. A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics 66 (12):1383–98. doi:10.1016/j.apacoust.2005.04.008.
  • Koizumi, T., N. Tsujiuchi, and A. Adachi. 2002. The development of sound absorbing materials using natural bamboo fibers. WIT Transactions on the Built Environment 59. doi:10.2495/HPS02016.
  • Kumaresan, M., S. Sathish, and N. Karthi. 2015. Effect of fiber orientation on mechanical properties of sisal fiber reinforced epoxy composites. Journal of Applied Science and Engineering 18 (3):289–94.
  • Liao, J., S. Zhang, and X. Tang. 2020. Sound absorption of hemp fibers (Cannabis Sativa L .) based nonwoven fabrics and composites: A review. Journal of Natural Fibers 1–13. 10.1080/15440478.2020.1764453
  • Liu, X., X. Yan, L. Li, and H. Zhang. 2015. Sound-absorption properties of kapok fiber nonwoven fabrics at low frequency. Journal of Natural Fibers 12 (4):311–22. doi:10.1080/15440478.2014.919891.
  • Malawade, U. A., and M. G. Jadhav. 2020. Investigation of the acoustic performance of bagasse. Journal of Materials Research and Technology 9 (1):882–89. doi:10.1016/j.jmrt.2019.11.028.
  • Mamtaz, H., M. H. Fouladi, M. Al-Atabi, and S. Narayana Namasivayam. 2016. Acoustic absorption of natural fiber composites. Journal of Engineering 2016:1–11. 2016. doi:10.1155/2016/5836107.
  • Mati-Baouche, N., H. De Baynast, P. Michaud, T. Dupont, and P. Leclaire. 2016. Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder. Applied Acoustics 111 (111):179–87. doi:10.1016/j.apacoust.2016.04.021.
  • Miki, Y. 1990. Acoustical properties of porous materials-modifications of delany-bazley models. Journal of the Acoustical Society of Japan (E 11 (1):19–24. doi:10.1250/ast.11.19.
  • Or, K. H., A. Putra, and M. Z. Selamat. 2017. Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Applied Acoustics 119 (119):9–16. doi:10.1016/j.apacoust.2016.12.002.
  • Othmani, C., M. Taktak, A. Zein, T. Hentati, T. Elnady, T. Fakhfakh, and M. Haddar. 2016. Experimental and theoretical investigation of the acoustic performance of sugarcane wastes-based material. Applied Acoustics (109):90–96. doi:10.1016/j.apacoust.2016.02.005.
  • Raj, M., S. Fatima, and N. Tandon. 2020. Recycled materials as a potential replacement to synthetic sound absorbers: A study on denim shoddy and waste jute fibers. Applied Acoustics 159 (159):107070. doi:10.1016/j.apacoust.2019.107070.
  • Ramis, J., J. Alba, R. Del Rey, E. Escuder, and V. J. Sanchís. 2010. New absorbent material acoustic based on kenaf’s fibre. Materiales de construccion 60 (299):133–43. doi:10.3989/mc.2010.50809.
  • Suter, A. H. 2002. Construction noise: Exposure, effects, and the potential for remediation; a review and analysis. Aiha Journal 63 (6):768–89. doi:10.1080/15428110208984768.
  • Tiuc, A. E., H. Vermeşan, T. Gabor, and O. Vasile. 2016. Improved sound absorption properties of polyurethane foam mixed with textile waste. Energy Procedia 85 (85):559–65. doi:10.1016/j.egypro.2015.12.245.
  • Wang, C. N., and J. H. Torng. 2001. Experimental study of the absorption characteristics of some porous fibrous materials. Applied Acoustics 62 (4):447–59. doi:10.1016/S0003-682X(00)00043-8.
  • Xinzhao, X., L. Guoming, L. Dongyan, S. Guoxin, and Y. Rui. 2018. Electrically conductive graphene-coated polyurethane foam and its epoxy composites. Composites Communications 7 (7):1–6. doi:10.1016/j.coco.2017.11.003.
  • Yang, H. S., D. J. Kim, and H. J. Kim. 2003. Rice straw–wood particle composite for sound absorbing wooden construction materials. Bioresource Technology 86 (2):117–21. doi:10.1016/S0960-8524(02)00163-3.
  • Zheng, W., K. Phoungthong, F. Lü, L. M. Shao, and P. J. He. 2013. Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management 33 (12):2632–40. doi:10.1016/j.wasman.2013.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.