226
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Tensile Properties Optimization of Date Palm Leaflets Using Taguchi Method

, , , ORCID Icon, , & show all

References

  • Agoudjil, B., A. Benchabane, A. Boudenne, L. Ibos, and M. Fois. 2011. Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy and Buildings 43 (2–3):491–97. doi:10.1016/j.enbuild.2010.10.014.
  • Alotaibi, M. D., B. A. Alshammari, N. Saba, O. Y. Alothman, M. R. Sanjay, Z. Almutairi, and M. Jawaid. 2019. Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). International Journal of Biological Macromolecules 135:69–76. doi:10.1016/j.ijbiomac.2019.05.102.
  • Alshammari, B. A., N. Saba, M. D. Alotaibi, M. F. Alotibi, M. Jawaid, and O. Y. Alothman. 2019. Evaluation of mechanical, physical, and morphological properties of epoxy composites reinforced with different date palm fillers. Materials 12 (13):2145. doi:10.3390/ma12132145.
  • Al-Sulaiman, F. 2000. Mechanical properties of date palm leaves. Journal of Reinforced Plastics and Composites 19 (17):1379–88. doi:10.1177/073168400772678491.
  • Al-Sulaiman, F. A. 2002. Mechanical properties of date palm fiber reinforced composites. Applied Composite Materials 9 (6):369–77. doi:10.1023/A:1020216906846.
  • Amroune, S., A. Bezazi, A. Belaadi, C. Zhu, F. Scarpa, S. Rahatekar, and A. Imad. 2015. Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Composites. Part A, Applied Science and Manufacturing 71 (November):98–106. doi:10.1016/j.compositesa.2014.12.011.
  • Amroune, S., A. Bezazi, A. Dufresne, F. Scarpa, and A. Imad. 2019. Investigation of the Date Palm Fiber for Green Composites Reinforcement: Thermo-physical and Mechanical Properties of the Fiber. Journal of Natural Fibers 1–18. doi:10.1080/15440478.2019.1645791.
  • Babaki, M., M. Yousefi, Z. Habibi, and M. Mohammadi. 2017. Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology. Renewable Energy 105:465–72. doi:10.1016/j.renene.2016.12.086.
  • Bedjaoui, H., and H. Benbouza. 2020. Assessment of phenotypic diversity of local Algerian date palm (Phoenix dactylifera L.) cultivars. Journal of the Saudi Society of Agricultural Sciences 19 (1):65–75. doi:10.1016/j.jssas.2018.06.002.
  • Benzidane, R., Z. Sereir, M. L. Bennegadi, P. Doumalin, and C. Poilâne. 2018. Morphology, static and fatigue behavior of a natural UD composite: The date palm petiole ‘wood’. Composite Structures 203 November 2017:110–23. doi:10.1016/j.compstruct.2018.06.122
  • Bezazi, A., S. Amroune, F. Scarpa, A. Dufresne, and A. Imad. 2020a January. Investigation of the date palm fiber for green composites reinforcement: Quasi-static and fatigue characterization of the fiber. Industrial Crops and Products 146(112135):112135. doi:10.1016/j.indcrop.2020.112135.
  • Bezazi, A., A. Belaadi, M. Bourchak, F. Scarpa, and K. Boba. 2014. Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Composites Part B: Engineering 66:194–203. doi:10.1016/j.compositesb.2014.05.014.
  • Bezazi, A., H. Boumediri, G. Garcia Del Pino, B. Bezzazi, F. Scarpa, and P. N. B. Reis. 2020b. Alkali Treatment Effect on Physicochemical and Tensile Properties of Date Palm Rachis Fibers. Journal of Natural Fibers 1–18. doi:10.1080/15440478.2020.1848726.
  • Boumediri, H., A. Bezazi, G. G. G. G. Del Pino, A. Haddad, F. Scarpa, and A. Dufresne. 2019. Extraction and characterization of vascular bundle and fiber strand from date palm rachis as potential bio-reinforcement in composite. Carbohydrate Polymers 222 (April):114997. doi:10.1016/j.carbpol.2019.114997.
  • Cabeza, L. F., C. Barreneche, L. Miró, J. M. Morera, E. Bartolí, and A. Inés Fernández. 2013. Low carbon and low embodied energy materials in buildings: A review. Renewable and Sustainable Energy Reviews 23:536–42. doi:10.1016/j.rser.2013.03.017.
  • Cheung, H. Y., M. P. Ho, K. T. Lau, F. Cardona, and D. Hui. 2009. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering 40 (7):655–63. doi:10.1016/j.compositesb.2009.04.014.
  • Dhakal, H., A. Bourmaud, F. Berzin, F. Almansour, Z. Zhang, D. U. Shah, and J. Beaugrand. 2018. Industrial crops & products mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocomposites. Industrial Crops and Products 126 (June):394–402. doi:10.1016/j.indcrop.2018.10.044.
  • Djoudi, T., M. Hecini, D. Scida, Y. Djebloun, and H. Djemai. 2019. Physico-mechanical characterization of composite materials based on date palm tree fibers. Journal of Natural Fibers 1–14. doi:10.1080/15440478.2019.1658251.
  • El May, Y., M. Jeguirim, S. Dorge, G. Trouvé, and R. Said. 2012. Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy 44 (1):702–09. doi:10.1016/j.energy.2012.05.022.
  • FAOSTAT 2018. Food and Agriculture Organization Corporate Statistical Database [electronic resource]. http://www.fao.org/faostat/fr/?#data/QC.
  • Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Fuqua, M. A., S. Huo, and C. A. Ulven. 2012. Natural fiber reinforced composites. Polymer Reviews 52 (3–4):259–320. doi:10.1080/15583724.2012.705409.
  • Galiwango, E., N. S. Abdel Rahman, A. H. Al-Marzouqi, M. M. Abu-Omar, and A. A. Khaleel. 2019. Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon 5 (12):e02937. doi:10.1016/j.heliyon.2019.e02937.
  • García Del Pino, G., A. Bezazi, H. Boumediri, A. C. Kieling, C. C. Silva, J. Dehaini, J. L. V. Rivera, M. Valenzuela, D. S. Das G, F. R. V. Díaz, et al. 2020a. Hybrid epoxy composites made from treated curauá fibres and organophilic clay. Journal of Composite Materials 002199832094578. doi:10.1177/0021998320945785.
  • García Del Pino, G., A. C. Kieling, A. Bezazi, H. Boumediri, J. F. Rolim De Souza, F. Valenzuela Díaz, J. L. Valin Rivera, J. Dehaini, and T. H. Panzera. 2020b. Hybrid polyester composites reinforced with Curauá fibres and nanoclays. Fibers and Polymers 21 (2):399–406. doi:10.1007/s12221-020-9506-7.
  • Gros-Balthazard, M., C. Newton, S. Ivorra, M. H. Pierre, J. C. Pintaud, J. F. Terral, and K. M. Olsen. 2016. The domestication syndrome in Phoenix dactylifera seeds: Toward the identification of wild date palm populations. PLoS ONE 11 (3):1–21. doi:10.1371/journal.pone.0152394.
  • Hamid, B., and H. Abdelmadjid. 2016. Influence of treatments on the date palm fiber and cement matrix behavior: tensile and pull-out tests. American Journal of Civil Engineering and Architecture 4 (6):211–15. doi:10.12691/ajcea-4-6-3.
  • Hamza, S., H. Saad, B. Charrier, N. Ayed, and F. Charrier-El Bouhtoury. 2013. Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products 49:357–65. doi:10.1016/j.indcrop.2013.04.052.
  • Khiari, R., M. F. Mhenni, M. N. Belgacem, and E. Mauret. 2010. Chemical composition and pulping of date palm rachis and Posidonia oceanica – A comparison with other wood and non-wood fibre sources. Bioresource Technology 101 (2):775–80. doi:10.1016/j.biortech.2009.08.079.
  • Kriker, A., G. Debicki, A. Bali, M. M. Khenfer, and M. Chabannet. 2005. Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement and Concrete Composites 27 (5):554–64. doi:10.1016/j.cemconcomp.2004.09.015.
  • Kumar, R., K. Kumar, and S. Bhowmik. 2014. Optimization of mechanical properties of epoxy based wood dust reinforced green composite using Taguchi method. Procedia Materials Science 5:688–96. doi:10.1016/j.mspro.2014.07.316.
  • Li, L., J. Lv, W. Chen, W. Wang, X. Zhang, and G. Xie. 2016. A multi-model EKF integrated navigation algorithm for deep water AUV. International Journal of Advanced Robotic Systems 13 (1):3. doi:10.5772/62076.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers 171:163–72. doi:10.1016/j.carbpol.2017.04.096.
  • Mahdi, E., D. R. Hernández, and E. O. Eltai. 2015. Effect of water absorption on the mechanical properties of long date palm leaf fiber reinforced epoxy composites. Journal of Biobased Materials and Bioenergy 9 (2):173–81. doi:10.1166/jbmb.2015.1508.
  • Mahdi, E., D. Ochoa, A. Vaziri, and E. Eltai. 2019. Energy absorption capability of date palm leaf fiber reinforced epoxy composites rectangular tubes. Composite Structures 224:111004. doi:10.1016/j.compstruct.2019.111004.
  • Masri, T., H. Ounis, L. Sedira, A. Kaci, and A. Benchabane. 2018. Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Construction and Building Materials 164:410–18. doi:10.1016/j.conbuildmat.2017.12.197.
  • Mirmehdi, S. M., F. Zeinaly, and F. Dabbagh. 2014. Date palm wood flour as filler of linear low-density polyethylene. Composites Part B: Engineering 56:137–41. doi:10.1016/j.compositesb.2013.08.008.
  • Mohanty, J. R., S. N. Das, H. C. Das, and S. K. Swain. 2014. Effect of chemically modified date palm leaf fiber on mechanical, thermal and rheological properties of polyvinylpyrrolidone. Fibers and Polymers 15 (5):1062–70. doi:10.1007/s12221-014-1062-6.
  • Rowell, R. M. 2008. Natural fibres: Types and properties. Properties and Performance of Natural-Fibre Composites 3–66. doi:10.1533/9781845694593.1.3.
  • Saadaoui, N., A. Rouilly, K. Fares, and L. Rigal. 2013. Characterization of date palm lignocellulosic by-products and self-bonded composite materials obtained thereof. Materials & Design 50:302–08. doi:10.1016/j.matdes.2013.03.011.
  • Saaidia, A., A. Bezazi, A. Belbah, H. Bouchelaghem, F. Scarpa, and S. Amirouche. 2017. Mechano-physical properties and statistical design of jute yarns. Measurement: Journal of the International Measurement Confederation 111 October 2016:284–94. doi:10.1016/j.measurement.2017.07.054
  • Sawalha, S., R. Ma’ali, R. Joma’a, Y. Salhi, and K. Edaily. 2019. Tensile modulus of film stacked palm fibers-LDPE sheet composites. Journal of Natural Fibers 1–9. doi:10.1080/15440478.2019.1691115.
  • Sbiai, A., H. Kaddami, H. Sautereau, A. Maazouz, and E. Fleury. 2011. TEMPO-mediated oxidation of lignocellulosic fibers from date palm leaves. Carbohydrate Polymers 86 (4):1445–50. doi:10.1016/j.carbpol.2011.06.005.
  • Sbiai, A., A. Maazouz, E. Fleury, H. Sautereau, and H. Kaddami. 2010. Short date palm tree fibers/polyepoxy composites prepared using RTM process: Effect of tempo mediated oxydation of the fibers. BioResources 5 (2):672–89.
  • Unal, C. R., D. O. Stanley, and C. R. Joyner. 1993. Propulsion system design optimization using the Taguchi method. IEEE Transactions on Engineering Management 40 (3):315–22. doi:10.1109/17.233194.
  • Vijay, R., D. L. Singaravelu, A. Vinod, I. D. F. Paul Raj, M. R. Sanjay, and S. Siengchin. 2020. Characterization of novel natural fiber from Saccharum bengalense grass (Sarkanda). Journal of Natural Fibers 17 (12):1739–47. doi:10.1080/15440478.2019.1598914.
  • Vinod, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, Y. Yagnaraj, and S. Khan. 2019. Extraction and characterization of natural fiber from stem of Cardiospermum halicababum. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2019.1669514.
  • Yang, W. H., and Y. S. Tarng. 1998. Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology 84 (1–3):122–29. doi:10.1016/S0924-0136(98)00079-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.