150
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Role of Silk Fiber Loading on Physico-Mechanical Properties of Epoxy Composites

&

References

  • Akesson, D., M. Skrifvars, J. Seppala, and M. Turunen. 2011. Thermoset lactic acid-based resin as a matrix for flax fibers. Journal of Applied Polymer Science 119:3004–09. doi:10.1002/app.33030.
  • Andrews, E. H., and A. Stevenson. 1978. Fracture energy of epoxy resin under plane strain conditions. Journal of Material Science 13:1680–88. doi:10.1007/BF00548731.
  • Brighenti, R., A. Carpinteri, and D. Scorza. 2013. Fracture mechanics approach for a partially debonded cylindrical fibre. Composites Part B Engineering 53:169–78. doi:10.1016/j.compositesb.2013.03.042.
  • Chand, N., and B. D. Jhod. 2008. Mechanical, electrical, and thermal properties of maleic anhydride modified rice husk filled PVC composites. Bioresources 3:1228–42. doi:10.15376/biores.3.4.1228-1243.
  • Chen, F., X. Liu, H. Yang, B. Dong, Y. Zhou, D. Chen, H. Hu, X. Xiao, D. Fan, and C. Zhang. 2016. A simple one-step approach to fabrication of highly hydrophobic silk fabrics. Applied Surface Science 360:207–12. doi:10.1016/j.apsusc.2015.10.186.
  • Darshan, S. M., and B. Suresha. 2019. Mechanical and abrasive wear behaviour of waste silk fiber reinforced epoxy biocomposites using taguchi method. Materials Science Forum 969:787–93. doi:10.4028/.scientific.net/MSF.969.787.
  • Dhal, J. P., and S. C. Mishra. 2013. Processing and properties of natural fiber-reinforced polymer composite. Journal of Materials 45:1–6. doi:10.1155/2013/297213.
  • Faruk, O., A. K. Bledzki, H. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 37:1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Gangil, B., A. Patnaik, A. Kumar, and M. Kumar. 2012. Investigations on mechanical and sliding wear behaviour of short fibre-reinforced vinylester-based homogenous and their functionally graded composites. Journal of Materials Design and Applications 226:300–15. doi:10.1177/1464420712450956.
  • Goutianos, S., T. Peijs, B. Nystrom, and M. Skrifvars. 2006. Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials 13:199–215. doi:10.1007/s10443-006-9010-2.
  • Han, S. O., S. M. Lee, W. H. Park, and D. Cho. 2006. Mechanical and thermal properties of waste silk fiber-reinforced Poly(butylene succinate) biocomposites. Journal of Applied Polymer Science 100:4972–80. doi:10.1002/app.23300.
  • Ibrahim, H., M. Farag, H. Megahed, and S. Mehanny. 2014. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydrate Polymers 101 (1):11–19. doi:10.1016/j.carbpol.2013.08.051.
  • Khan, A., A. M. Asiri, A. A. P. Khan, M. A. Rub, N. Azum, M. M. Rahman, A. O. Al-Youbi, and A. H. Qusti. 2014. Dual nature, self oxidized Poly(o-Anisidine) functionalized multiwall carbon nanotubes composite: Preparation, thermal and electrical studies. Composites Part B: Engineering 58:451–56. doi:10.1016/j.compositesb.2013.10.059.
  • Khan, A., A. A. P. Khan, A. M. Asiri, M. M. Rahman, and B. G. Alhogbi. 2015. Preparation and properties of novel sol-gel-derived quaternized Poly(n-Methyl Pyrrole)/Sn(II)SiO3/CNT. Composites. Journal of Solid State Electrochemistry 19::1479–89. doi:10.1007/s10008-015-2760-8.
  • Khan, A., A. A. P. Khan, M. M. Rahman, and A. M. Asiri. 2016. High performance polyaniline/vanadyl phosphate (PANI-VOPO4) nano composite sheets prepared by exfoliation/intercalation method for sensing applications. European Polymer Journal 75:388–98. doi:10.1016/j.eurpolymj.2016.01.003.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2019. Extraction and characterization of natural fiber from eleusine indica grass as reinforcement of sustainable fiber-reinforced polymer composites. Journal of Natural Fibers 1–9. doi:10.1080/15440478.2019.1697993.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2020. Characterization of natural fibers from cortaderia selloana grass (Pampas) as reinforcement material for the production of the composites. Journal of Natural Fibers: 1–9. doi:10.1080/15440478.2019.1709110.
  • Lakhera, S. K., H. Y. Hafeez, P. Veluswamy, V. Ganesh, A. Khan, H. Ikeda, and B. Neppolian. 2018. Enhanced photocatalytic degradation and hydrogen production activity of in situ grown TiO2 coupled NiTiO3 nanocomposites. Applied Surface Science 449:790–98. doi:10.1016/j.apsusc.2018.02.136.
  • Lee, S. M., D. Cho, W. H. Park, S. G. Lee, S. O. Han, and L. T. Drzal. 2005. Novel silk/poly (butylene succinate) biocomposites: The effect of short fibre content on their mechanical and thermal properties. Composites Science and Technology 65:647–58. doi:10.1016/j.compscitech.2004.09.023.
  • Li, W., X. Qiao, K. Sun, and X. Chen. 2008. Mechanical and viscoelastic properties of novel silk fibroin fiber/poly(epsilon-caprolactone) biocomposites. Journal of Applied Polymer Science 110:134–39. doi:10.1002/app.28514.
  • Lu, J. H., and J. P. Youngblood. 2015. Adhesive bonding of carbon fiber reinforced composite using UV-curing epoxy resin. Composites Part B: Engineering 82:221–25. doi:10.1016/j.compositesb.2015.08.022.
  • Narayanasamy, P., P. Balasundar, S. Senthil, M. R. Sanjay, S. Siengchin, A. Khan, and A. M. Asiri. 2020. Characterization of a novel natural cellulosic fiber from calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules 150:793–801. doi:10.1016/j.ijbiomac.2020.02.134.
  • Patnaik, A., and S. Tejyan. 2014. Mechanical and visco-elastic analysis of viscose fiber based needle punched nonwoven fabric mat reinforced polymer composites: Part I. Journal of Industrial Textiles 43:440–57. doi:10.1177/1528083712458305.
  • Premalatha, N., S. S. Saravanakumar, M. R. Sanjay, S. Siengchin, and A. Khan. 2019. Structural and thermal properties of chemically modified luffa cylindrica fibers. Journal of Natural Fibers 1–7. doi:10.1080/15440478.2019.1678546.
  • Rahman, M. M., S. B. Khan, H. M. Marwani, A. M. Asiri, K. A. Alamry, M. A. Rub, A. Khan, A. A. P. Khan, and N. Azum. 2014. Facile synthesis of doped ZnO-CdO nanoblocks as solid-phase adsorbent and efficient solar photo-catalyst applications. Journal of Industrial and Engineering Chemistry 20:2278–86. doi:10.1016/j.jiec.2013.09.059.
  • Sanjay, M. R., S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan. 2019. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers. doi:10.1016/j.carbpol.2018.11.083.
  • Shah, D. U. 2013. Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. Journal of Materials Science 48 (18):6083–107. doi:10.1007/s10853-013-7458-7.
  • Shah, D. U. 2014. Natural fibre composites: Comprehensive Ashby-type materials selection charts. Materials and Design 62:21–31. doi:10.1016/j.matdes.2014.05.002.
  • Shah, D. U., D. Porter, and F. Vollrath. 2014. Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Composites Science and Technology 101:173–83. doi:10.1016/j.compscitech.2014.07.015.
  • Shubhra, Q. T. H., A. K. M. M. Alam, and M. D. H. Beg. 2011. Mechanical and degradation characteristics of natural silk fiber reinforced gelatin composites. Materials Letters 65:333–36. doi:10.1016/j.matlet.2010.09.059.
  • Thomas., R., D. Yumei, H. Yuelong, Y. Le, P. Moldenaers, Y. Weimin, T. Czigany, and S. Thomas. 2008. Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–94. doi:10.1016/j.polymer.2007.11.030.
  • Vollrath, F. 1999. Biology of spider silk. International Journal of Biological Macromolecules 24:81–88. doi:10.1016/s0141-8130(98)00076-2.
  • Wu, C., K. Yang, Y. Gu, J. Xu, R. O. Ritchie, and J. Guan. 2019. Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibres. Composites Part A: Applied Science and Manufacturing 117:357–68. doi:10.1016/j.compositesa.2018.12.003.
  • Yang, K., R. O. Ritchie, Y. Gu, S. J. Wu, and J. Guan. 2016. High volume-fraction silk fabric reinforcements can improve the key mechanical properties of epoxy resin composites. Materials and Design 108:470–78. doi:10.1016/j.matdes.2016.06.128.
  • Yang, K., S. Wu, J. Guan, Z. Shao, and R. O. Ritchie. 2017. Enhancing the mechanical toughness of epoxy-resin composites using natural silk reinforcements. Scientific Reports 7:1–10. doi:10.1038/s41598-017-11919-1.
  • Yuan, Q., J. Yao, X. Chen, L. Huang, and Z. Shao. 2010. The preparation of high performance silk fiber/fibroin composite. Polymer 51:4843–49. doi:10.1016/j.polymer.2010.08.042.
  • Zhao, Y., H. Cheung, K. Lau, C. Xu, D. Zhao, and H. Li. 2010. Silkworm silk/poly(lactic acid) biocomposites: Dynamic mechanical, thermal and biodegradable properties. Polymer Degradation and Stability 95:1978–87. doi:10.1016/j.polymdegradstab.2010.07.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.