284
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Utilization of Natural Cellulosic African Teff Straw Fiber for Development of Epoxy Composites: Thermal Characterization with Activation Energy Analysis

&

References

  • Abdullahi, M., P. A. Mamza, and G. A. Shallangwa. 2019. Effect of visco-elastic parameters and activation energy of epoxy resin matrix reinforced with Sugarcane Bagasse Powder (SCBP) Using Dynamic Mechanical Analyzer (DMA). American Journal of Plolymer Science and Technology 4 (3):53–60. doi:10.11648/jajpst.20180403.11.
  • Bageru, A. B., and V. C. Srivastava. 2017. Preparation and characterisation of biosilica from Teff (eragrostis tef) straw by thermal method. Materials Letters 206:13–17. doi:10.1016/j.matlet.2017.06.100.
  • Chufo, A., H. Yuan, D. Zou, Y. Pang, and X. Li. 2015. Biomethane production and physicochemical characterization of anaerobically digested Teff(Eragrostis tef) straw pretreated by sodium hydroxide. Bioresorce Technology 181:214–19. doi:10.1016/j.biortech.2015.01.054.
  • Devnani, G., and S. Sinha. 2019. Epoxy-based composites reinforced with African Teff straw (Eragrostis tef) for lightweight applications. Polymers and Polymer Composites 27 (4):189–200. doi:10.1177/0967391118822269.
  • Faruk, O., A. K. Bledzki, H. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers. Progress in Polymer Science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Hussain, A., X. Li, X. Xu, A. Qadeer, W. Liu, J. Bai, and J. Wang. 2019. Evaluation of mechanical and thermal properties of modi fi ed epoxy resin by using acacia catechu particles. Materials Chemistry and Physics 225:239–46. doi:10.1016/j.matchemphys.2018.12.063.
  • Islam, M. E., M. M. Rahman, M. Hosur, and S. Jeelani. 2015. Thermal stability and kinetics analysis of epoxy composites modified with reactive polyol diluent and multiwalled carbon nanotubes. Journal of Applied Polymer Science 132 (9):1–11. doi:10.1002/app.41558.
  • Kale, R. D., T. G. Alemayehu, V. G. Gorade, G. Bullosa, S. Wedd, and E. Kusha. 2020. Extraction and characterization of lignocellulosic fibers from girardinia bullosa (steudel) wedd. (ethiopian kusha plant) extraction and characterization of lignocellulosic fibers from. Journal of Natural Fibers17:906–20. doi:10.1080/15440478.2018.1539940
  • Karmarkar, S. 2018. Thermal decomposition kinetics of jute fiber filled HDPE composites. Journal of the Indian Academy of Wood Science 15 (1):33–40. doi:10.1007/s13196-018-0205-6.
  • Kılınç, A. Ç., S. Köktaş, Y. Seki, M. Atagür, R. Dalmış, Ü. H. Erdoğan, A. A. Göktaş, and M. Ö. Seydibeyoğlu. 2018. Extraction and investigation of lightweight and porous natural fiber from Conium maculatum as a potential reinforcement for composite materials in transportation. Composites Part B: Engineering 140:1–8. doi:10.1016/j.compositesb.2017.11.059.
  • Krishnasamy, S., S. Muthu, K. Thiagamani, C. Muthu, R. Nagarajan, and R. M. Shahroze. P, I. D. M. 2019. International Journal of Biological Macromolecules Recent advances in thermal properties of hybrid cellulosic fi ber reinforced polymer composites. International Journal of Biological Macromolecules 141:1–13. doi:10.1016/j.ijbiomac.2019.08.231.
  • Li, S., S. Xu, S. Liu, C. Yang, and Q. Lu. 2004. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology 85(8–10:1201–11. doi:10.1016/j.fuproc.2003.11.043.
  • Madhu, P., M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, and B. Yogesha. 2019a. A review on synthesis and characterization of commercially available natural fibers: Part-I. Journal of Natural Fibers 16 (8):1132–44. doi:10.1080/15440478.2018.1453433.
  • Madhu, P., M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, and B. Yogesha. 2019b. A review on synthesis and characterization of commercially available natural fibers: Part II. Journal of Natural Fibers 16 (1):25–36. doi:10.1080/15440478.2017.1379045.
  • Matykiewicz, D., and M. Barczewski. 2019. Basalt powder as an eco-friendly fi ller for epoxy composites . Thermal and Thermo-mechanical Properties Assessment. Composites Part B 164:272–79. doi:10.1016/j.compositesb.2018.11.073.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2001. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 8 (5):313–43. doi:10.1163/156855401753255422.
  • Motaung, T. E., and R. D. Anandjiwala. 2015. Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Industrial Crops and Products 74:472–77. doi:10.1016/j.indcrop.2015.05.062.
  • Nayak, S. Y., M. Thariq, H. Sultan, S. B. Shenoy, C. R. Kini, R. Samant, and P. Amuthakkannan. 2020. Potential of Natural Fibers in Composites for Ballistic Applications – A Review. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1787919.
  • Ornaghi, H., Jr, Poletto, M., & Zattera, A., Amico, S C. 2014. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 211:177–88. 10.1007/s10570-013-0094-1
  • Oza, S., H. Ning, I. Ferguson, and N. Lu. 2014. Effect of surface treatment on thermal stability of the hemp-PLA composites: Correlation of activation energy with thermal degradation. Composites Part B: Engineering 67:227–32. doi:10.1016/j.compositesb.2014.06.033.
  • Poletto, M., V. Pistor, M. Zeni, and A. J. Zattera. 2011. Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability 96 (4):679–85. doi:10.1016/j.polymdegradstab.2010.12.007.
  • Priyadharshini, G. S. 2020. Characterization of surface-modified natural cellulosic fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2020.04.117.
  • Saba, N., M. Jawaid, O. Y. Alothman, M. T. Paridah, and A. Hassan. 2016. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites 35 (6):447–70. doi:10.1177/0731684415618459.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites. A Comprehensive Review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Saravana, A., A. Senthilkumar, S. S. Saravanakumar, L. Loganathan, B. M. C. Rajan, A. Saravana, and S. S. Saravanakumar. 2020. Mechanical properties of alkali-treated carica papaya fiber-reinforced epoxy composites. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1739590.
  • Sydow, Z., and K. Bieńczak. 2019. The overview on the use of natural fibers reinforced composites for food packaging. Journal of Natural Fibers 16 (8):1189–200. doi:10.1080/15440478.2018.1455621.
  • Varma, A. K., and P. Mondal. 2016. Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. Journal of Energy Resources Technology 138 (5):052205. doi:10.1115/1.4032729.
  • Vinayaka, D. L., V. Guna, D. Madhavi, A. Arpitha, and N. Reddy. 2017. Ricinus communis plant residues as a source for natural cellulose fibers potentially exploitable in polymer composites. Industrial Crops & Products 100:126–31. doi:10.1016/j.indcrop.2017.02.019.
  • Wassie, A. B., and V. C. Srivastava. 2016. Teff straw characterization and utilization for chromium removal from wastewater : Kinetics, isotherm and thermodynamic modelling. Journal of Environmental Chemical Engineering 4:1117–25. doi:10.1016/j.jece.2016.01.019.
  • Yao, F., Q. Wu, Y. Lei, W. Guo, and Y. Xu. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability 93 (1):90–98. doi:10.1016/j.polymdegradstab.2007.10.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.