538
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of Agro Waste Fibers as New Thermal Insulation and Sound Absorbing Materials: Hybrid of Date Palm Tree Leaves and Wheat Straw Fibers

ORCID Icon, , , , &

References

  • Agoudjil, B., A. Benchabane, A. Boudenne, L. Ibos, and M. Fois. 2011. Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy and Buildings 43 (2):491–97. doi:10.1016/j.enbuild.2010.10.014.
  • Agrebi, F., H. Hammami, M. Asim, M. Jawaid, and A. Kallel. 2019. Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. Journal of Composite Materials:1–10. doi:10.1177/0021998319871351.
  • Alabdulkarem, A., M. Ali, G. Iannace, S. Sadek, and R. Almuzaiqer. 2018. Thermal analysis, microstructure and acoustic characteristics of some hybrid natural insulating materials. Construction and Building Materials 187:185–96. doi:10.1016/j.conbuildmat.2018.07.213.
  • Alemdar, A., and M. Sain. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology 68 (2):557–65. doi:10.1016/j.compscitech.2007.05.044.
  • Ali, M., A. Alabdulkarem, A. Nuhait, K. Al-Salem, G. Iannace, R. Almuzaiqer, A. Al-turki, F. Al-Ajlan, Y. Al-Mosabi, and A. Al-Sulaimi. 2020b. Thermal and acoustic characteristics of novel thermal insulating materials made of eucalyptus globulus leaves and wheat straw fibers. Journal of Building Engineering 32:101452. doi:10.1016/j.jobe.2020.101452.
  • Ali, M., A. Alabdulkarem, A. Nuhait, K. Al-Salem, R. Almuzaiqer, O. Bayaquob, H. Salah, A. Alsaggaf, and Z. Algafri. 2020a. Thermal analyses of loose agave, wheat straw fibers and agave/wheat straw as new hybrid thermal insulating materials for buildings. Journal of Natural Fibers:1–16. Advance online publication. doi:10.1080/15440478.2020.1724232.
  • Ali, M. E., and A. Alabdulkarem. 2017. On thermal characteristics and microstructure of a new insulation material extracted from date palm trees surface fibers. Construction and Building Materials 138:276–84. doi:10.1016/j.conbuildmat.2017.02.012.
  • Ali-Eldin, S. S., S. M. Abd El-Moezz, M. Megahed, and W. S. Abdalla. 2019. Study of hybridization effect of new developed rice straw mat/glass fiber reinforced polyester composite. Journal of Natural Fibers:1–13. Advance online publication. doi:10.1080/15440478.2019.1688749.
  • Al-Juruf, R., F. Ahmed, I. Alam, and H. Abdel-Rahman. 1988. Development of heat insulating materials using date palm leaves. Journal of Thermal Insulation 11 (3):158–64. doi:10.1177/109719638801100304.
  • Al‐Sulaiman, F. A. 2003. Date palm fibre reinforced composite as a new insulating material. International Journal of Energy Research 27 (14):1293–97. doi:10.1002/er.957.
  • Amroune, S., A. Bezazi, A. Dufresne, F. Scarpa, and A. Imad. 2019. Investigation of the date palm fiber for green composites reinforcement: Thermo-physical and mechanical properties of the fiber. Journal of Natural Fibers. Advance online publication. doi:10.1080/15440478.2019.1645791.
  • Asdrubali, F., F. D’Alessandro, and S. Schiavoni. 2015. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 4:1–17. doi:10.1016/j.susmat.2015.05.002.
  • Ashour, T., H. Georg, and W. Wu. 2011. Performance of straw bale wall: A case of study. Energy and Buildings 43 (8):1960–67. doi:10.1016/j.enbuild.2011.04.001.
  • Asim, M., M. Jawaid, A. Khan, A. M. Asiri, and M. A. Malik. 2020a. Effects of date palm fibres loading on mechanical, and thermal properties of date palm reinforced phenolic composites. Journal of Materials Research and Technology 9 (3):3614–21. doi:10.1016/j.jmrt.2020.01.099.
  • Asim, M., M. T. Paridah, M. Chandrasekar, R. M. Shahroze, M. Jawaid, M. Nasir, and R. Siakeng. 2020b. Thermal stability of natural fibers and their polymer composites. Iranian Polymer Journal 29:625–48. doi:10.1007/s13726-020-00824-6.
  • ASTM-C518. 2010. American Society of Testing and Materials (ASTM). standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus (C 518), 152–66. West Conshohocken, PA 19428–2959, United Stated.
  • ASTM-D2974-07A. 2007. Standard test methods for moisture, ash, and organic matter of peat and other organic soils. West Conshohocken, PA: ASTM International. www.astm.org.
  • ASTM-E1508–98. 2008. Standard guide for quantitative analysis by energy-dispersive spectroscopy. West Conshohocken, PA: ASTM International. www.astm.org.
  • Bainbridge, D. A. 1986. High performance low cost buildings of straw. Agriculture, Ecosystems & Environment 16 (3–4):281–84. doi:10.1016/0167-8809(86)90009-5.
  • Ball, R., A. McIntosh, and J. Brindley. 2004. Feedback processes in cellulose thermal decomposition: Implications for fire-retarding strategies and treatments. Combustion Theory and Modelling 8 (2):281–91. doi:10.1088/1364-7830/8/2/005.
  • Belakroum, R., A. Gherfi, K. Bouchema, A. Gharbi, Y. Kerboua, M. Kadja, C. Maalouf, T. Mai, N. El Wakil, and M. Lachi. 2017. Hygric buffer and acoustic absorption of new building insulation materials based on date palm fibers. Journal of Building Engineering 12:132–39. doi:10.1016/j.jobe.2017.05.011.
  • Berardi, U., and G. Iannace. 2015. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 94:840–52. doi:10.1016/j.buildenv.2015.05.029.
  • Berardi, U., G. Iannace, and M. Gabriele. 2017. The acoustic characterization of broom fibers. Journal of Natural Fibers 14 (6):858–63. doi:10.1080/15440478.2017.1279995.
  • Bouasker, M., N. Belayachi, D. Hoxha, and M. Al-Mukhtar. 2014. Physical characterization of natural straw fibers as aggregates for construction materials applications. Materials 7 (4):3034–48. doi:10.3390/ma7043034.
  • El May, Y., S. Dorge, M. Jeguirim, G. Trouvé, and R. Said. 2012. Measurement of gaseous and particulate pollutants during combustion of date palm wastes for energy recovery. Aerosol and Air Quality Research 12 (5):814–25. doi:10.4209/aaqr.2012.03.0056.
  • Evon, P., V. Vandenbossche, P. Y. Pontalier, and L. Rigal. 2014. New thermal insulation fiberboards from cake generated during biorefinery of sunflower whole plant in a twin-screw extruder. Industrial Crops and Products 52:354–62. doi:10.1016/j.indcrop.2013.10.049.
  • Fouladi, M. H., M. H. Nassir, M. Ghassem, M. Shamel, S. Y. Peng, S. Y. Wen, P. Z. Xin, and M. J. M. Nor. 2013. Utilizing Malaysian natural fibers as sound absorber. In In Modeling and measurement methods for acoustic waves and for acoustic microdevices, ed. M. G. Beghi, 161–70. IntechOpen, Rijeka, Croatia.
  • Ghori, W., N. Saba, M. Jawaid, and M. Asim. 2018. A review on date palm (phoenix dactylifera) fibers and its polymer composites. IOP Conference Series: Materials Science and Engineering 368–012009. doi:10.1088/1757-899X/368/1/012009.
  • Iannace, G. 2017. The acoustic characterization of green materials. Building Acoustics 24 (2):101–13. doi:10.1177/1351010X17704624.
  • ISO 10534–2, A:1998. Determination of sound absorption coefficient and impedance in impedance tubes - Part 2: Transfer-function method
  • Korjenic, A., V. Petránek, J. Zach, and J. Hroudová. 2011. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings 43:2518–23. doi:10.1016/j.enbuild.2011.06.012.
  • Kosiński, P., P. Brzyski, A. Szewczyk, and W. Motacki. 2018. Thermal properties of raw hemp fiber as a loose-fill insulation material. Journal of Natural Fibers 15 (5):717–30. doi:10.1080/15440478.2017.1361371.
  • Kosiński, P., P. Brzyski, and B. Duliasz. 2020. Moisture and wetting properties of thermal insulation materials based on hemp fiber, cellulose and mineral wool in a loose state. Journal of Natural Fibers 17 (2):199–213. doi:10.1080/15440478.2018.1477086.
  • Liu, L., S. Zou, H. Li, L. Deng, C. Bai, X. Zhang, S. Wang, and N. Li. 2019. Experimental physical properties of an eco-friendly bio-insulation material based on wheat straw for buildings. Energy and Buildings 201:19–36. doi:10.1016/j.enbuild.2019.07.037.
  • Liuzzi, S., C. Rubino, F. Martellotta, P. Stefanizzi, C. Casavola, and G. Pappalettera. 2020. Characterization of biomass-based materials for building applications: The case of straw and olive tree waste. Industrial Crops and Products 147:112229. doi:10.1016/j.indcrop.2020.112229.
  • Marichelvam, M. K., M. Jawaid, and M. Asim. 2019. Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 7:32. doi:10.3390/fib7040032.
  • McKendry, P. 2002. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology 83 (1):37–46. doi:10.1016/S0960-8524(01)00118-3.
  • Meena, S. K., R. Sahu, and R. Ayothiraman. Utilization of waste wheat straw fibers for improving the strength characteristics of clay. 2019. Journal of Natural Fibers:1–15. Advance online publication. doi:10.1080/15440478.2019.1691116.
  • Muthukumar, N., G. Thilagavathi, S. Neelakrishnan, and P. T. Poovaragan. 2019. Sound and thermal insulation properties of flax/low melt PET needle punched nonwovens. Journal of Natural Fibers 16 (2):245–52. doi:10.1080/15440478.2017.1414654.
  • Muthuraj, R., C. Lacoste, P. Lacroix, and A. Bergeret. 2019. Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Industrial Crops and Products 135:238–45. doi:10.1016/j.indcrop.2019.04.053.
  • Nasir, M., D. P. Khali, M. Jawaid, P. M. Tahir, R. Siakeng, M. Asim, and T. A. Khan. 2019. Recent development in binderless fiber-board fabrication from agricultural residues: A review. Construction and Building Materials 211:502–16. doi:10.1016/j.conbuildmat.2019.03.279.
  • National Center. 2018. Mid-year report of National Center for Palms and Dates, www.ncpd.org.sa
  • Netzsch-HFM-436-Lambda. 2020. accessed May 17, 2020. https://www.strath.ac.uk/media/departments/mechanicalengineering/compositematerials/officedocuments/HFM_436_Lambda_brochure.pdf
  • Nguyen, D. M., A. C. Grillet, T. M. H. Diep, Q. B. Bui, and M. Woloszyn. 2018. Influence of thermo-pressing conditions on insulation materials from bamboo fibers and proteins based bone glue. Industrial Crops and Products 111:834–45. doi:10.1016/j.indcrop.2017.12.009.
  • Oushabi, A., S. Sair, Y. Abboud, O. Tanane, and A. Bouari. 2015. Natural thermal-insulation materials composed of renewable resources: Characterization of local date palm fibers (LDPF). Journal of Materials and Environmental Science 6 (12):3395–402.
  • RILEM-TC. 1984. Test for the determination of modulus of rupture and limit of proportionality of thin fibre reinforced cement sections. In RILEM recommendations for the testing and use of constructions materials, ed. E. Rilem and F. Spon, 161–63. London, UK:E & FN SPON. ISBN 2351580117.
  • Shahroze, R. M., M. R. Ishak, M. S. Salit, Z. Leman, M. Chandrasekar, N. S. Z. Munawar, and M. Asim. 2019. Sugar palm fiber/polyester nanocomposites: Influence of adding nanoclay fillers on thermal, dynamic mechanical, and physical properties. Journal of Vinyl and Additive Technology 1–8. doi:10.1002/vnl.
  • Shea, A., K. Wall, and P. Walker. 2013. Evaluation of the thermal performance of an innovative prefabricated natural plant fibre building system. Building Services Engineering Research & Technology 34 (4):369–80. doi:10.1177/0143624412450023.
  • Thilagavathi, G., N. Muthukumar, S. N. Krishnanan, and T. Senthilram. 2020. Development and characterization of pineapple fibre nonwovens for thermal and sound insulation applications. Journal of Natural Fibers 17 (10):1391–400. doi:10.1080/15440478.2019.1569575.
  • Thomson, A., and P. Walker. 2014. Durability characteristics of straw bales in building envelopes. Construction and Building Materials 68:135–41. doi:10.1016/j.conbuildmat.2014.06.041.
  • Troppová, E., M. Švehlík, J. Tippner, and R. Wimmer. 2015. Influence of temperature and moisture content on the thermal conductivity of wood-based fibreboards. Materials and Structures 48 (12):4077–83. doi:10.1617/s11527-014-0467-4.
  • Zakriya, G. M., C. Prakash, and G. Ramakrishnan. Exploration of jute-HCP composites material for building environments. 2019. Journal of Natural Fibers:1–10. Advance online publication. doi:10.1080/15440478.2019.1697988.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.