483
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Mechanical and thermal properties of wood fiber reinforced geopolymer composites

, , , &

References

  • Alomayri, T. 2017. Effect of glass microfibre addition on the mechanical performances of fly ash-based geopolymer composites. Journal of Asian Ceramic Societies 5:334–40. doi:10.1016/j.jascer.2017.06.007.
  • Alomayri, T., F. U. A. Shaikh, and I. M. Low. 2013. Characterization of cotton fiber-reinforced geopolymer composites. Composites Part B: Engineering 50:1–6. doi:10.1016/j.compositesb.2013.01.013.
  • Assaedi, H., F. U. A. Shaikh, and I. M. Low. 2015. Utilization of nanoclay to reinforce flax fabric-geopolymer composites. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 9:1331–39.
  • Assaedi, H., F. U. A. Shaikh, and I. M. Low. 2016. Characterizations of flax fabric reinforced nano-clay-geopolymer composites. Composites Part B: Engineering 95:412–22. doi:10.1016/j.compositesb.2016.04.007.
  • Bederina, M., L. Marmoret, K. Mezreb, M. M. Khenfer, A. Bali, and M. Queneudec. 2007. Effect of the addition of wood shavings on thermal conductivity of sand concretes: Experimental study and modelling. Construction and Building Materials 21:662–68. doi:10.1016/j.conbuildmat.2005.12.008.
  • Benmansour, N., B. Agoudjil, A. Gherabli, A. Kareche, and A. Boudenne. 2014. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy and Buildings 81:98–104. doi:10.1016/j.enbuild.2014.05.032.
  • Bentz, D. P., M. A. Peltz, A. Duran-Herrera, P. Valdez, and C. A. Juarez. 2010. Thermal properties of high-volume fly ash mortars and concretes. Journal of Building Physics 34 (3):263–75. doi:10.1177/1744259110376613.
  • Bernal, S. A., J. Bejarano, C. Garzon, R. M. De Gutierrez, S. Delvasto, and E. D. Rodriguez. 2012. Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Composites Part B: Engineering 43:1919–28. doi:10.1016/j.compositesb.2012.02.027.
  • Berzins, A., A. Morozovs, U. Gross, and J. Iejavs. 2017. Mechanical properties of wood-geopolymer composite. Engineering for Rural Development 05:24–26. doi:10.22616/ERDev2017.16.N251.
  • Bohlooli, H., A. Nazari, G. Khalaj, M. M. Kaykha, and S. Riahi. 2012. Experimental investigations and fuzzy logic modeling of compressive strength of geopolymers with seeded fly ash and rice husk bark ash. Composites Part B: Engineering 43:1293–301. doi:10.1016/j.compositesb.2012.01.012.
  • Browning, B. L. 1975. The Chemistry of Wood. New York: Robert E. Krueger Publishing.
  • Chen-Tan, N. W., A. Van Riessen, V. L. Y. Chi, and D. C. Southam. 2009. Determining the reactivity of a fly ash for production of geopolymer. Journal of the American Ceramic Society 92:881–87. doi:10.1111/j.1551-2916.2009.02948.x.
  • Collet, F., and S. Pretot. 2014. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Construction and Building Materials 65:612–19. doi:10.1016/j.conbuildmat.2014.05.039.
  • Coutts, S. P. R., and P. Kightly. 1984. Bonding in wood fibre-cement composites. Journal of Materials Science 19:3355–59. doi:10.1016/10.1007/BF00549827.
  • Davidovits, J. 2013. Geopolemer cement, a review. Technical paper. Institute of Geopolymere. 11
  • Fernandez, J. A., A. Palomo, and M. Criado. 2005. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cement and Concrete Research 35:1204–09. doi:10.1016/j.cemconres.2004.08.021.
  • Fernandez-Jimenez, A., M. Monzo, M. Vicent, A. Barba, and A. Palomo. 2008. Alkaline activation of metakaolin-fly ash mixtures: Obtain of zeoceramics and zeocements. Microporous and Mesoporous Materials 108:41–49. doi:10.1016/j.micromeso.2007.03.024.
  • Fernea, R., D. L. Manea, D. R. Tămas-Gavrea, and I. Călin Roșca. 2019. Hemp-clay building materials - An investigation on acoustic, thermal and mechanical properties. Procedia Manufacturing 32:216–23. doi:10.1016/j.promfg.2019.02.205.
  • Ferreira, J. A. M., C. Capela, and J. D. Costa. 2010. A study of the mechanical properties of natural fibre reinforced composites. Fibers and Polymers 11:1181–86. doi:10.1007/s12221-010-1181-7.
  • Fox 2000. Instrument for measuring thermal conductivity -BROCH-LC-2015-EN–1.
  • Furtos, G., L. Silaghi-Dumitrescu, M. Moldovan, B. Baldea, R. Trusca, and C. Prejmerean. 2012. Influence of filler/reinforcing agent and post-curing on the flexural properties of woven and unidirectional glass fiber reinforced composites. Journal of Materials Science 47:3305–14. doi:10.1007/s10853-011-6169-1.
  • Furtos, G., L. Silaghi-Dumitrescu, P. Pascuta, C. Sarosi, and K. Korniejenko. 2019. Mechanical properties of wood fiber reinforced geopolymer composites with sand addition. Journal of Natural Fibers 06:1–19. doi:10.1080/15440478.2019.1621792.
  • Furtos, G., M. Tomoaia-Cotisel, B. Baldea, and C. Prejmerean. 2013a. Development and characterization of new AR glass fiber reinforced cements with potential medical applications. Journal of Applied Polymer Science 128::1266–73. doi:10.1002/app.38508.
  • Furtos, G., M. Tomoaia-Cotisel, and C. Prejmerean. 2013. Resin composites reinforced by glass fibers with potential biomedical structure and mechanical properties. Particulate Science and Technology 31:332–39. doi:10.1080/02726351.2012.736458.
  • Fused Mullite. properties and applications of duramul. accessed January 20, 2021. https://www.azom.com/article.aspx?ArticleID=5442
  • Hajj, N. E., B. M. Mamboundou, R. M. Dheilly, Z. Aboura, M. Benzeggagh, and M. Queneudec. 2011. Development of thermal insulating and sound absorbing agro-sourced materials from auto linked flax-tows. Industrial Crops and Products 34 (1):921–28. doi:10.1016/j.indcrop.2011.02.012.
  • Hull, D., and T. W. Clyne. 2002. An introduction to composite materials. Cambridge: Cambridge University Press.
  • Komnitsas, K., and D. Zaharaki. 2007. Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering 20:1261–77. doi:10.1016/j.mineng.2007.07.011.
  • Korjenic, A., J. Zach, and J. Hroudová. 2016. The use of insulating materials based on natural fibers in combination with plant facades in building constructions. Energy and Buildings 116:45–58. doi:10.1016/j.enbuild.2015.12.037.
  • Korjenic, A., V. Petránek, J. Zach, and J. Hroudová. 2011. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings 43 (9):2518–23. doi:10.1016/j.enbuild.2011.06.012.
  • Korniejenko, K., E. Fraczek, E. Pytlak, and M. Adamski. 2016. Mechanical properties of geopolymer composites reinforced with natural fibers. Procedia Engineering 151:388–93. doi:10.1016/j.proeng.2016.07.395.
  • Korniejenko, K., M. Łach, N. Dogan-Saglamtimur, G. Furtos, and J. Mikuła. 2020. The overview of mechanical properties of short natural fiber reinforced geopolymer composites. Environmental Research & Technology 3 (1):28–39. doi:10.35208/ert.671713.
  • Lafond, C., and P. Blanchet. 2020. Technical performance overview of bio-based insulation materials compared to expanded polystyrene. Buildings 10 (81):1–13. doi:10.3390/buildings10050081.
  • Lazko, J., B. Dupré, R. M. Dheilly, and M. Quéneudec. 2011. Biocomposites based on flax short fibres and linseed oil. Industrial Crops and Products 33 (2):317–24. doi:10.1016/j.indcrop.2010.11.015.
  • Lee, W. K. W., and J. S. J. Van Deventer. 2002. The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 211:115–26. doi:10.1016/S0927-7757(02)00239-X.
  • Low, I. M., J. Somers, H. S. Kho, I. J. Davies, and B. A. Latella. 2009. Fabrication and properties of recycled cellulose fibre-reinforced epoxy composites. Composite Interfaces 16:659–69. doi:10.1163/092764409X12477417562210.
  • Luna-Galiano, Y., C. Leiva, C. Arenas, and C. Fernández-Pereira. 2018. Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties. Journal of Non-Crystalline Solids 500:196–204. doi:10.1016/j.jnoncrysol.2018.07.069.
  • Mazen, A., A. M. Saida, J. Al-Kafawein, Y. Al-Faiyz, F. Tarek, K. Abderrazek, and R. Fernando. 2017. Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre - Reinforced geopolymer composite. Applied Clay Science 143:125–33. doi:10.1016/j.clay.2017.03.030.
  • Mehta, A., and R. Siddique. 2017. Sulfuric acid resistance of fly ash based geopolymer concrete. Construction and Building Materials 146:136–43. doi:10.1016/j.conbuildmat.2017.04.077.
  • Meng, Q. K., M. Hetzer, and D. De Kee. 2011. PLA/clay/wood nanocomposites: Nanoclay effects on mechanical and thermal properties. Journal of Composite Materials 45:1145–58. doi:10.1177/0021998310381541.
  • Mo, K. H., C. S. Bong, U. J. Alengaram, M. Z. Jumaat, and S. P. Yap. 2017. Thermal conductivity, compressive and residual strength evaluation of polymer fibre-reinforced high volume palm oil fuel ash blended mortar. Construction and Building Materials 130:113–21. doi:10.1016/j.conbuildmat.2016.11.005.
  • Nematollahi, B., J. Sanjayan, and F. U. A. Shaikh. 2014. Comparative deflection hardening behavior of short fiber reinforced geopolymer composites. Construction and Building Materials 70:54–64. doi:10.1016/j.conbuildmat.2014.07.085.
  • Oderji, S. Y., B. Chen, and S. T. A. Jaffar. 2017. Effects of relative humidity on the properties of fly ash-based. Construction and Building Materials 153:268–73. doi:10.1016/j.conbuildmat.2017.07.115.
  • Palomo, A., M. W. Grutzeck, and M. T. Blanco. 1999. Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research 29 (8):1323–29. doi:10.1016/S0008-8846(98)00243-9.
  • Rahman, M. M., M. H. Rashid, M. A. Hossain, M. T. Hasan, and M. K. Hasan. 2011. Performance evaluation of bamboo reinforced concrete beam. International Journal of Engineering and Technology 11:113–18.
  • Rattanasak, U., and P. Chindaprasirt. 2009. Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering 22:1073–78. doi:10.1016/j.mineng.2009.03.022.
  • Sarmin, S. N., J. Welling, A. Krause, and A. Shalbafan. 2014. Investigating the possibility of geopolymer to produce inorganic-bonded wood composites for multifunctional construction material – A Review. BioResources 9:7941–50. doi:10.15376/biores.9.4.7941-7950.
  • Sarmina, S. N., and J. Welling. 2016. Lightweight geopolymer wood composite synthesized from alkali-activated fly ash and metakaolin. Jurnal Teknologi 78 (11):49–55. doi:10.11113/.v78.8734.
  • Sassoni, E., S. Manzi, A. Motori, M. Montecchi, and M. Canti. 2014. Novel sustainable hemp-based composites for application in the building industry: Physical, thermal and mechanical characterization. Energy and Buildings 77:219–26. doi:10.1016/j.enbuild.2014.03.033.
  • Sassoni, E., S. Manzi, A. Motori, M. Montecchi, and M. Canti. 2015. Experimental study on the physical–mechanical durability of innovative hemp-based composites for the building industry. Energy and Buildings 104:316–22. doi:10.1016/j.enbuild.2014.03.033.
  • Shi, J. J., L. B. Lu, W. T. Guo, J. Y. Zhang, and Y. Cao. 2013. Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohydrate Polymers 98 (1):282–89. doi:10.1016/j.carbpol.2013.05.082.
  • Swanepoel, J. C., and C. A. Strydom. 2002. Utilisation of fly ash in a geopolymeric material. Applied Geochemistry 17:1143–48. doi:10.1016/S0883-2927(02)00005-7.
  • Taoukil, D., A. El Bouardi, F. Sick, A. Mimet, H. Ezbakhe, and T. Ajzoul. 2013. Moisture content influence on the thermal conductivity and diffusivity of wood–concrete composite. Construction and Building Materials 48::104–15. doi:10.1016/j.conbuildmat.2013.06.067.
  • Tsalagkas, D., Z. Börcsök, and Z. Pásztory. 2019. Thermal, physical and mechanical properties of surface overlaid bark-based insulation panels. European Journal of Wood and Wood Products 77:721–30. doi:10.1007/s00107-019-01436-5.
  • Uysal, H., R. Demirboga, R. Sahin, and R. Gül. 2004. The effects of different cement dosages, slumps, and pumice aggregate, ratios on the thermal conductivity and density of concrete. Cement and Concrete Research 34:845–48. doi:10.1016/j.cemconres.2003.09.018.
  • Valverde, I. C., L. H. Castilla, D. F. Nuñez, E. Rodriguez-Senín, and R. Mano Ferreira. 2013. Development of new insulation panels based on textile recycled fibers. Waste Biomass- Valoriz 4 (1):139–46. doi:10.1007/s12649-012-9124-8.
  • Villa, C., E. T. Pecina, R. Torres, and L. Gomez. 2010. Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials 24:2084–90. doi:10.1016/j.conbuildmat.2010.04.052.
  • Vishu, S. 1998. Handbook of plastic testing technology, 546. 2nd ed. New York: John Wiley.
  • Wei, K. C., C. L. Lv, M. Z. Chen, X. Y. Zhou, Z. Y. Dai, and D. Shen. 2015. Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing. Energy and Buildings 87:116–22. doi:10.1016/j.enbuild.2014.11.026.
  • Yahya, Z., K. N. Ismail, M. M. Al Bakri Abdullah, K. Hussin, R. A. Razak, and A. V. Sandu. 2015. Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials 8:2227–42. doi:10.3390/ma8052227.
  • Yang, T., H. Zhu, and Z. Zhang. 2017. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Construction and Building Materials 153:284–93. doi:10.1016/j.conbuildmat.2017.05.067.
  • Zhou, X. Y., F. Zheng, H. G. Li, and C. L. Lu. 2010. An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings 42 (7):1070–74. doi:10.1016/j.enbuild.2010.01.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.