238
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Properties of Kenaf Cellulose Nanofiber (CNF) as Potential Larvicide Nanocarrier and Its Acute Ecotoxicity against Daphnia Magna and Dania rerio

ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Abdul Khalil, H. P. S., A. F. Ireana Yusra, A. H. Bhat, and M. Jawaid. 2010. Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products 31 (1):113–21. doi:10.1016/j.indcrop.2009.09.008.
  • Alsharef, J. M. A., M. R. Taha, and T. A. Khan. 2017. Physical dispersion of nanocarbons in composites. A review. Jurnal Teknologi 79 (5):69–81. doi:10.11113/jt.v79.7646.
  • Barrett, E. P., L. G. Joyner, and P. P. Halenda. 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 73 (1):373–80. doi:10.1021/ja01145a126.
  • Bhandari, J., H. Mishra, P. K. Mishra, R. Wimmer, F. J. Ahmad, and S. Talegaonkar. 2017. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. International Journal of Nanomedicine 12:2021–31. doi:10.2147/IJN.S124318.
  • Brinkmann, A., M. Chen, M. Couillard, Z. J. Jakubek, T. Leng, and L. J. Johnston. 2016. Correlating cellulose nanocrystal particle size and surface area. Langmuir 32 (24):6105–14. doi:10.1021/acs.langmuir.6b01376.
  • Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60 (2):309–19. doi:10.1021/ja01269a023.
  • Chen, W., H. He, H. Zhu, M. Cheng, Y. Li, and S. Wang. 2018. Thermo-responsive cellulose-based material with switchable wettability for controllable oil/water separation. Polymers 10 (6):592. doi:10.3390/polym10060592.
  • De France, K. J., T. Hoare, and E. D. Cranston. 2017. Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials 29 (11):4609–31. doi:10.1021/acs.chemmater.7b00531.
  • Dufresne, A. 2013. Nanocellulose: A new ageless bionanomaterial. Materials Today 16 (6):220–27. doi:10.1016/j.mattod.2013.06.004.
  • Duong, T. V., and G. V. Mooter. 2016. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: Amorphous carriers. Expert Opinion on Drug Delivery 13 (12):1681–94. doi:10.1080/17425247.2016.1198769.
  • Grasso, D., K. Subramaniam, M. Butkus, K. Strevett, and J. Bergendahl. 2002. A review of non-DLVO interactions in environmental colloidal systems. Reviews in Environmental Science and Biotechnology 1 (1):17–38. doi:10.1023/A:1015146710500.
  • Gustafsson, S., and A. Mihranyan. 2016. Strategies for tailoring the pore-size distribution of virus retention filter papers. ACS Applied Materials & Interfaces 8 (22):13759–67. doi:10.1021/acsami.6b03093.
  • Harper, B. J., A. Clendaniel, F. Sinche, D. Way, M. Hughes, J. Schardt, J. Simonsen, A. B. Stefaniak, and S. L. Harper. 2016. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish. Cellulose 23 (3):1763–75. doi:10.1007/s10570-016-0947-5.
  • Israelachvili, J. N. 2011. Solvation, structural, and hydration Forces. In Intermolecular and Surface Forces, 3rd ed., 341–80. Oxford: Elsevier Ltd.
  • Jiang, H., T. Wang, L. Wang, C. Sun, T. Jiang, G. Cheng, and S. Wang. 2012. Development of an amorphous mesoporous TiO2 nanosphere as a novel carrier for poorly water-soluble drugs: Effect of different crystal forms of TiO2 carriers on drug loading and release behaviors. Microporous and Mesoporous Materials 153:124–30. doi:10.1016/j.micromeso.2011.12.013.
  • Jog, R., and D. J. Burgess. 2017. Pharmaceutical amorphous nanoparticles. Journal of Pharmaceutical Sciences 106 (1). doi: 10.1016/j.xphs.2016.09.014.
  • Juère, E., and F. Kleitz. 2018. On the nanopore confinement of therapeutic drugs into mesoporous silica materials and its implications. Microporous and Mesoporous Materials 270:109–19. doi:10.1016/j.micromeso.2018.04.031.
  • Karavelidis, V., D. Bikiaris, and K. Avgoustakis. 2015. New thermosensitive nanoparticles prepared by biocompatible pegylated aliphatic polyester block copolymers for local cancer treatment. Journal of Pharmacy and Pharmacology 67 (2):215–30. doi:10.1111/jphp.12337.
  • Kargarzadeh, H., I. Ahmad, I. Abdullah, A. Dufresne, S. Y. Zainudin, and R. M. Sheltami. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19 (3):855–66. doi:10.1007/s10570-012-9684-6.
  • Karimi, S., P. M. Tahir, A. Karimi, A. Dufresne, and A. Abdulkhani. 2014. Kenaf bast cellulosic fibers hierarchy: A comprehensive approach from micro to nano. Carbohydrate Polymers 101 (1):878–85. doi:10.1016/j.carbpol.2013.09.106.
  • Kulasinski, K., S. Keten, S. V. Churakov, R. Guyer, J. Carmeliet, and D. Derome. 2014. Molecular mechanism of moisture-induced transition in amorphous cellulose. ACS Macro Letters 3 (10):1037–40. doi:10.1021/mz500528m.
  • Kumar, A., and C. K. Dixit. 2017. Methods for characterization of nanoparticles. In Advances in nanomedicine for the delivery of therapeutic nucleic acids, ed. N. Surendra, R. Chandra, and N. Gupta, 44–58. Duxford: Elsevier Ltd.
  • Lead, J. R., G. E. Batley, P. J. J. Alvarez, M. N. Croteau, R. D. Handy, M. J. McLaughlin, J. D. Judy, and K. Schirmer. 2018. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. An updated review. Environmental Toxicology and Chemistry 37 (8):2029–63. doi:10.1002/etc.4147.
  • Lowry, G. V., R. J. Hill, S. Harper, A. F. Rawle, C. O. Hendren, F. Klaessig, U. Nobbmann, P. Sayre, and J. Rumble. 2016. Guidance to improve the scientific value of Zeta-potential measurements in NanoEHS. Environmental Science: Nano 3 (5):953–65. doi:10.1039/c6en00136j.
  • Luu, T. D., B. J. Lee, P. H. L. Tran, and T. T. D. Tran. 2019. Modified sprouted rice for modulation of curcumin crystallinity and dissolution enhancement by solid dispersion. Journal of Pharmaceutical Investigation 49 (1):127–34. doi:10.1007/s40005-018-0393-5.
  • Md Abu, T., K. A. Zahan, M. A. Rajaie, C. R. Leong, S. Ab Rashid, N. S. Mohd Nor Hamin, W. N. Tan, and W. Y. Tong. 2020. Nanocellulose as drug delivery system for honey as antimicrobial wound dressing. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.01.076.
  • Mtibe, A., T. H. Mokhothu, M. J. John, T. C. Mokhena, and M. J. Mochane. 2018. Fabrication and characterization of various engineered nanomaterials. In Handbook of nanomaterials for industrial applications, ed. C. M. Hussain, 151–71. 1st ed. United Kingdom: Elsevier.
  • Ning, L., C. You, Y. Zhang, X. Li, and F. Wang. 2020. Synthesis and biological evaluation of surface-modified nanocellulose hydrogel loaded with Paclitaxel. Life Sciences 241:117137. doi:10.1016/j.lfs.2019.117137.
  • OECD (Organisation for Economic Cooperation and Development). 1992. Test no. 203: Fish acute toxicity testing. OECD guideline for testing of chemicals. Section 2. Paris: OECD Publishing.
  • OECD (Organisation for Economic Cooperation and Development). 2004. Test No. 202: Daphnia sp. acute immobilization test. OECD guideline for the testing of chemicals. Section 2. Paris: OECD Publishing.
  • OECD (Organisation for Economic Cooperation and Development). 2017. Test no. 318: Dispersion stability of nanomaterials in simulated environmental media. OECD guidelines for the testing of chemicals. Section 3. Paris: OECD Publishing.
  • Ogonowski, M., U. Edlund, E. Gorokhova, M. Linde, K. Ek, B. Liewenborg, O. Konnecke, J. R. G. Navarro, and M. Breitholtz. 2018. Multi-level toxicity assessment of engineered cellulose nanofibrils. Daphnia Magna. Nanotoxicology 1–13. doi:10.1080/17435390.2018.1464229.
  • Ong, K. J., J. A. Shatkin, K. Nelson, J. D. Ede, and T. Retsina. 2017. Establishing the safety of novel bio-based cellulose nanomaterials for commercialization. NanoImpact 6:19–29. doi:10.1016/j.impact.2017.03.002.
  • Panchal, P., E. Ogunsona, and T. Mekonnen. 2019. Trends in advanced functional material applications of nanocellulose. Processes 7 (10):1–27. doi:10.3390/pr7010010.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH image to imagej: 25 years of image analysis. Nature Methods 9 (7):671–75. doi:10.1038/nmeth.2089.
  • Sharma, M. 2019. Behavioral responses in effect to chemical stress in fish: A review. International Journal of Fisheries and Aquatic Studies 7:(1).1–5.
  • Sing, K. S. W., D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemienieska. 1985. International union of pure commission on colloid and surface chemistry including catalysis. Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57 (4):603–19. doi:10.1351/pac198557040603.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87 (9–10):1051–69. doi:10.1515/pac-2014-1117.
  • Trache, D., A. F. Tarchoun, M. Derradji, T. S. Hamidon, N. Masruchin, N. Brosse, and M. H. Hussin. 2020. Nanocellulose: From fundamentals to advanced applications. Frontiers in Chemistry. doi:10.3389/fchem.2020.00392.
  • Troedec, M. L., D. Sedan, C. Peyratout, J. P. Bonnet, A. Smith, R. Guinebretiere, V. Gloaguen, and P. Krausz. 2008. Influence of various chemical treatments on the composition and structure of hemp fibers. Composites. Part A, Applied Science and Manufacturing 39 (3):514–22. doi:10.1016/j.compositesa.2007.12.001.
  • Tuerxun, D., T. Pulingam, N. I. Nordin, Y. W. Chen, J. Kamaldin, N. Muhd Julkapli, H. V. Lee, B. F. Leo, and M. R. Johan. 2019. Synthesis, characterization and cytotoxicity studies of nanocrystalline cellulose from the production waste of rubber-wood and kenaf-bast fibers. European Polymer Journal 116:352–60. doi:10.1016/j.eurpolymj.2019.04.021.
  • UN (United Nations). 2019. Globally harmonized system (GHS) of classification and labelling of chemicals. Vol. 10. 8th ed. New York and Geneva: United Nations.
  • US EPA (US Environmental Protection Agency). 2019. Basic information about pesticide ingredients. Ingredients used in pesticide products. US EPA. Accessed on September 18, 2020. https://www.epa.gov/ingredients-used-pesticide-products/basic-information-about-pesticide-ingredients.
  • Valo, H., S. Arola, P. Laaksonen, M. Torkkeli, L. Peltonen, M. B. Linder, R. Serimaa, S. Kuga, J. Hirvonen, and T. Laaksonen. 2013. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. European Journal of Pharmaceutical Sciences 50 (1):69–77. doi:10.1016/j.ejps.2013.02.023.
  • WHO (World Health Organisation). 2005. Guidelines for laboratory and field testing of mosquito larvicides. Geneva: World Health Organization. WHO/CDS/WHOPES/GCDPP/2005.11
  • Wong, S. T. S., A. Kamari, S. N. M. Yusoff, J. Jumadi, M. M. Abdulrasool, S. Kumaran, and S. Ishak. 2019. Brief review on materials used as carrier agents for larvicide formulations. Journal of Physics: Conference Series 1397:012025. 10.1088/1742-6596/1397/1/012025.
  • Yue, Y., X. Wang, J. Han, L. Yu, J. Chen, Q. Wu, and J. Jiang. 2019. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities. Carbohydrate Polymers 206:289–301. doi:10.1016/j.carbpol.2018.10.105.
  • Zhao, H. K., X. Y. Wei, Y. M. Xie, and Q. H. Feng. 2019. Preparation of nanocellulose and lignin-carbohydrate complex composite biological carriers and culture of heart coronary artery endothelial cells. International Journal of Biological Macromolecules 137:1161–68. doi:10.1016/j.ijbiomac.2019.07.062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.