223
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria Siceraria fiber reinforced epoxy composites

, , ORCID Icon &

References

  • Al-Oqla, F. M., and S. M. Sapuan. 2014. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production 66:347–54. doi:10.1016/j.jclepro.2013.10.050.
  • Balu, S., P. S. Sampath, M. Bhuvaneshwaran, G. Chandrasekar, A. Karthik, and S. Sagadevan. 2020. Dynamic mechanical analysis and thermal analysis of untreated Coccinia indica fiber composites. Polimery 65 (5):357–62. doi:10.14314/polimery.2020.5.3.
  • Barbhuiya, A. H., and K. Ismail. 2016. Effect of fiber length and loading on the properties of Schumannianthus dichotomus (murta) fiber–reinforced epoxy composites. Polymer Analysis and Characterization 21 (3):221–27. doi:10.1080/1023666X.2016.1139282.
  • Bhuvaneshwaran, M., P. S. Sampath, S. Balu, and S. Sagadevan. 2019a. Physicochemical and mechanical properties of natural cellulosic fiber from Coccinia Indica and its epoxy composites. Polimery 64 (10):656–64. doi:10.14314/polimery.2019.10.2.
  • Bhuvaneshwaran, M., P. S. Sampath, and S. Sagadevan. 2019. Influence of fiber length, fiber content and alkali treatment on mechanical properties of natural fiber-reinforced epoxy composites. Polimery 64 (2):93–99. doi:10.14314/polimery.2019.2.2.
  • Bhuvaneshwaran, M., S. K. Palaniappan, P. S. Sampath, S. K. Pal, and A. Karthik. 2019. Impact of nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. Journal of Materials Research and Technology 8 (6):6021–28. doi:10.1016/j.jmrt.2019.09.076.
  • Bhuvaneshwaran, M., S. P. Subramani, S. K. Palaniappan, S. K. Pal, and S. Balu. 2019b. Natural cellulosic fiber from Coccinia Indica stem for polymer composites: Extraction and characterization. Journal of Natural Fibers 18(5), 644-652.
  • Bledzki, A. K., and J. Gassan. 1999. Composites reinforced with cellulose based fibers. Progress in Polymer Science 24 (2):221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Boopalan, M., M. Niranjanaa, and M. J. Umapathy. 2013. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Composites Part B: Engineering 51:54–57. doi:10.1016/j.compositesb.2013.02.033.
  • Boynard, C. A., S. N. Monteiro, and J. R. M. d’Almeida. 2003. Aspects of alkali treatment of sponge gourd (Luffa cylindrica) fibers on the flexural properties of polyester matrix composites. Journal of Applied Polymer Science 87 (12):1927–32. doi:10.1002/app.11522.
  • Das, S. 2017. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydrate Polymers 172 (15):60–67. doi:10.1016/j.carbpol.2017.05.036.
  • Dhakal, S., and B. S. Keerthi Gowda. 2017. An experimental study on mechanical properties of banana polyester composite. Materials Today Proceedings 4 (8):7592–98. doi:10.1016/j.matpr.2017.07.092.
  • Easwara Prasad, G. L., B. S. Keerthi Gowda, and R. Velmurugan. 2017. Comparative study of impact strength characteristics of treated and untreated sisal polyester composites. Procedia Engineering 173:778–85. doi:10.1016/j.proeng.2016.12.096.
  • El-Shekeil, Y. A., S. M. Sapuan, K. Abdan, and E. S. Zainudin. 2012. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Materials & Design 40:299–303. doi:10.1016/j.matdes.2012.04.003.
  • Graupner, N., A. S. Herrmann, and J. Müssig. 2009. Natural and man-made cellulose fibre-reinforced poly (lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites. Part A, Applied Science and Manufacturing 40 (6):810–21. doi:10.1016/j.compositesa.2009.04.003.
  • Haque, M. M., M. Hasan, M. S. Islam, and M. E. Ali. 2009. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresource Technology 100 (20):4903–06. doi:10.1016/j.biortech.2009.04.072.
  • Ibrahim, N. A., Y. M. Othman, and K. Abdan. 2011. Effect of chemical surface treatment on the mechanical properties of reinforced plasticized poly biodegradable composites. Journal of Reinforced Plastics and Composites 30 (5):381–88. doi:10.1177/0731684410396595.
  • Joseph, P. V., K. Joseph, and S. Thomas. 1999. Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Composites Science and Technology 59 (11):1625–40. doi:10.1016/S0266-3538(99)00024-X.
  • Kushwaha, P. K., and R. Kumar. 2010. Effect of silanes on mechanical properties of bamboo fiber-epoxy composites. Journal of Reinforced Plastics and Composites 29 (5):718–24. doi:10.1177/0731684408100691.
  • Maheswari, C. U., K. O. Reddy, E. Muzenda, M. Shukla, and A. V. Rajulu. 2013. A comparative study of modified and unmodified high-density polyethylene/borassus fiber composites. Polymer Analysis and Characterization 18 (6):439–50. doi:10.1080/1023666X.2013.814027.
  • Matykiewicz, D., and O. Mysiukiewicz. 2020. Epoxy composites reinforced with natural fillers such as flax fiber and linseed cakes. Polimery 65(11-12:828–32. doi:10.14314/polimery.2020.11.11.
  • Mylsamy, B., S. K. Palaniappan, S. P. Subramani, S. K. Pal, and B. Sethuraman. 2020b. Innovative characterization and mechanical properties of natural cellulosic Coccinia Indica fiber and its composites. Materials Testing 62 (1):61–67. doi:10.3139/120.111451.
  • Mylsamy, B., V. Chinnasamy, S. K. Palaniappan, S. P. Subramani, and C. Gopalsamy. 2020a. Effect of surface treatment on the tribological properties of Coccinia Indica cellulosic fiber reinforced polymer composites. Journal of Materials Research and Technology 9 (6):16423–34. doi:10.1016/j.jmrt.2020.11.100.
  • Mylsamy, K., and I. Rajendran. 2011. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fiber reinforced epoxy composites. Materials & Design 32 (5):3076–84. doi:10.1016/j.matdes.2010.12.051.
  • Nagarajan, K. J., A. N. Balaji, K. S. Basha, N. R. Ramanujam, and R. A. Kumar. 2020. Effect of agro waste α-cellulosic micro filler on mechanical and thermal behavior of epoxy composites. International Journal of Biological Macromolecules 152:327–39. doi:10.1016/j.ijbiomac.2020.02.255.
  • Rajesh, M., and J. Pitchaimani. 2017. Mechanical properties of natural fiber braided yarn woven composite: Comparison with conventional yarn woven composite. Journal of Bionic Engineering 14 (1):141–50. doi:10.1016/S1672-6529(16)60385-2.
  • Ramesh, M., K. Palanikumar, and K. H. Reddy. 2013. Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Composites Part B: Engineering 48:1–9. doi:10.1016/j.compositesb.2012.12.004.
  • Sakthivel, M., and S. Ramesh. 2013. Mechanical properties of natural fiber (banana, coir, sisal) polymer composites. Science Park 1 (1):1–6.
  • Saravanan, N., P. S. Sampath, and T. A. Sukantha. 2016. Extraction and characterization of new cellulose fiber from the agrowaste of lagenaria siceraria (bottle guard) plant. Journal of Advances in Chemistry 12 (9):4382–88. doi:10.24297/jac.v12i9.3991.
  • Saravanan, N., P. S. Sampath, and T. A. Sukantha. 2018. Surface modification of eco-friendly ligno-cellulosic fibre extracted from Lagenaria siceraria plant agro waste: A sustainable approach. International Journal of Environment and Sustainable Development 17 (4):366–78. doi:10.1504/IJESD.2018.096863.
  • Sethuraman, B., S. P. Subramani, S. K. Palaniappan, B. Mylsamy, and K. Aruchamy. 2020. Experimental investigation on dynamic mechanical and thermal characteristics of Coccinia Indica fiber reinforced polyester composites. Journal of Engineered Fibers and Fabrics 15:1–6. doi:10.1177/1558925020905831.
  • Sgriccia, N., M. C. Hawley, and M. Misra. 2008. Characterization of natural fiber surfaces and natural fiber composites. Composites. Part A, Applied Science and Manufacturing 39 (10):1632–37. doi:10.1016/j.compositesa.2008.07.007.
  • Shanmugam, D., and M. Thiruchitrambalam. 2013. Static and dynamic mechanical properties of alkali treated unidirectional continuous palmyra palm leaf stalk fiber/jute fiber reinforced hybrid polyester composites. Materials & Design 50:533–42. doi:10.1016/j.matdes.2013.03.048.
  • Shao-Yun, F., X.-Q. Feng, B. Lauke, and M. Yiu-Wing. 2008. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering 39 (6):933–61. doi:10.1016/j.compositesb.2008.01.002.
  • Sun, Z. Y., H. S. Han, and G. Dai. 2009. Mechanical properties of injection moulded natural fiber reinforced polypropylene composites: Formulation and compounding processes. Journal of Reinforced Plastics and Composites 29 (5):637–50. doi:10.1177/0731684408100264.
  • Tao, Y. U., L. I. Yan, and R. E. N. Jie. 2009. Preparation and properties of short natural fiber reinforced poly (lactic acid) composites. Transactions of Nonferrous Metals Society of China 19:s651–5. doi:10.1016/S1003-6326(10)60126-4.
  • Venkateshwaran, N., A. Elayaperumal, and G. K. Sathiya. 2012. Prediction of tensile properties of hybrid-natural fiber composites. Composites Part B: Engineering 43 (2):793–96. doi:10.1016/j.compositesb.2011.08.023.
  • Venkateshwaran, N., A. E. Perumal, and D. Arunsundaranayagam. 2013. Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Materials & Design 47:151–59. doi:10.1016/j.matdes.2012.12.001.
  • Vinod, A., T. Y. Gowda, R. Vijay, M. R. Sanjay, M. K. Gupta, M. Jamil, V. Kushvaha, and S. Siengchin. 2021. Novel Muntingia Calabura bark fiber reinforced green-epoxy composite: A sustainable and green material for cleaner production. Journal of Cleaner Production 294:126337. doi:10.1016/j.jclepro.2021.126337.
  • Yousif, B. F., A. Shalwan, C. W. Chin, and K. C. Ming. 2012. Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design 40:378–85. doi:10.1016/j.matdes.2012.04.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.