134
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Physical, Chemical, Thermal and Surface Characterization of Cellulose Fibers Derived from Vachellia Nilotica Ssp. Indica Tree Barks

, , , , ORCID Icon &

References

  • Beakou, A., R. Ntenga, J. Lepetit, J. A. Ateba, and L. O. Ayina. 2008. Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Composites. A: Applied. Science and Manufacturing 39 (1):67–74. 10.1016/j.compositesa.2007.09.002.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37. 10.1016/j.carbpol.2015.08.024.
  • Boopalan, M., M. Niranjanaa, and M. J. Umapathy. 2013. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Composites Part B Engg 51:54–57. 10.1016/j.compositesb.2013.02.033.
  • Dhileepan, K., A. Balu, S. Murugesan, P. Senthilkumar, and R. G. Shivas. 2013. Survey and prioritisation of potential biological control agents for prickly acacia (Acacia nilotica subsp. indica) in southern India. Biocontrol Science and Technology 23 (6):646–64. 10.1080/09583157.2013.788689.
  • Ganesh, B. N., and B. Rekha. 2013. A comparative study on tensile behaviour of plant and animal fiber reinforced composites. International Journal of Innovation and Applied Studies 2:645–48.
  • Ganesh, B. N., and R. Muralikannan. 2016. Comprehensive characterization of lignocellulosic fruit fibers reinforced hybrid polyester composites. International Journal of Materials Science and Applications 5 (6):302–07. 10.11648/j.ijmsa.20160506.21.
  • Ganeshan, P., B. NagarajaGanesh, P. Ramshankar, and K. Raja. 2018. Calotropis gigantea fibers: A potential reinforcement for polymer matrices. International Journal of Polymer Analysis and Characterization 23 (3):271–77. 10.1080/1023666X.2018.1439560.
  • Jabli, M., N. Tka, K. Ramzi, and T. A. Saleh. 2018. Physicochemical characteristics and dyeing properties of lignin-cellulosic fibers derived from Nerium oleander. Journal of Molecular Liquids 249:1138–44. 10.1016/j.molliq.2017.11.126.
  • Jain, J., J. Shorab, and S. Shishir. 2018. Characterization and thermal kinetic analysis of pineapple leaf fibers and their reinforcement in epoxy. Journal of Elastomers & Plastics 1–20. 10.1177/0095244318783024.
  • Kalia, S., B. Kaith, and I. Kaur. 2011. Cellulose Fibers: Bio- and Nano-polymer Composites: Green Chemistry and Technology, Springer Science & Business Media.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2020b. Characterization of natural fibers from Cortaderia selloana grass (pampas) as reinforcement material for the production of the composites. Journal of Natural Fibers 1–9. 10.1080/15440478.2019.1709110.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, M. Jawaid, K. A. Alamry, and A. M. Asiri. 2020c. Extraction and Characterization of Natural Fibers from Citrullus lanatus Climber. Journal of Natural Fibers 1–9. 10.1080/15440478.2020.1758281.
  • Khan, A., V. Raghunathan, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, M. Jawaid, K. A. Alamry, and A. M. Asiri. 2020a. Extraction and Characterization of Cellulose Fibers from the Stem of Momordica charantia. Journal of Natural Fibers 1–11. 10.1080/15440478.2020.1807442.
  • Kozłowski, R., and M. Władyka-Przybylak. 2008. Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Technologies 19 (6):446–53. 10.1002/pat.113.
  • Kurschner, K., Hoffer, A., Jenkins, S.H. et al. Cellulose and Cellulose derivates. 1933. Fresenius Journal of Analytical Chemistry 92(3) 145–154. doi:10.1007/BF01354736
  • Ma, X., P. R. Chang, and J. Yu. 2008. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers 72 (3):369–75. 10.1016/j.carbpol.2007.09.002.
  • Madhu, P., M. R. Sanjay, M. Jawaid, S. Siengchin, A. Khan, and C. I. Pruncu. 2020. A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: Physico-chemical, thermal, mechanical and morphological properties. Polymer Testing 85:106437. 10.1016/j.polymertesting.2020.106437.
  • Mathew, A. P., K. Oksman, Z. Karim, P. Liu, S. A. Khan, and N. Naseri. 2014. Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Industrial Crops and Products 2014 (58):212–19. 10.1016/j.indcrop.2014.04.035.
  • Miao, C., and W. Y. Hamad. 2013. Cellulose reinforced polymer composites and nanocomposites: A critical review. Cellulose 20 (5):2221–62. 10.1007/s10570-013-0007-3.
  • Mwaikambo, L. A., and M. P. Ansell. 2006. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. Hemp fibres. Journal of Materials Science 41 (8):2483–96. 10.1007/s10853-006-5075-4.
  • NagarajaGanesh, B. 2018. Characterization studies on lignocellulosic fruit fibers and hybrid composites. PhD diss., Anna University.
  • NagarajaGanesh, B., and B. Rekha. 2019a. Morphology and damage mechanism of lignocellulosic fruit fibers reinforced polymer composites: A comparative study. SN Applied Sciences 1 (10):1250. 10.1007/s42452-019-1286-6.
  • NagarajaGanesh, B., and B. Rekha. 2019b. Effect of mercerization on the physico-chemical properties of matured and seasoned Cocos nucifera fibers for making sustainable composites. Materials Research Express 6 (12):125102. 10.1088/2053-1591/ab5395.
  • NagarajaGanesh, B., and B. Rekha. 2020. Intrinsic cellulosic fiber architecture and their effect on the mechanical properties of hybrid composites. Archives of Civil and Mechanical Engineering 20 (4):1–12. 10.1007/s43452-020-00125-y.
  • NagarajaGanesh, B., P. Ganeshan, P. Ramshankar, and K. Raja. 2019. Assessment of natural cellulosic fibers derived from Senna auriculata for making light weight industrial biocomposites. Industrial Crops and Products 139:111546. 10.1016/j.indcrop.2019.111546.
  • NagarajaGanesh, B., and R. Muralikannan. 2016a. Physico-chemical, thermal, and flexural characterization of Cocos nucifera nucifera fibers. International Journal of Polymer Analysis and Characterization 21 (3):244–50. 10.1080/1023666X.2016.1139359.
  • NagarajaGanesh, B., and R. Muralikannan. 2016b. Extraction and characterization of lignocellulosic fibers from Luffa cylindrica fruit. International Journal of Polymer Analysis and Characterization 21 (3):259–66. 10.1080/1023666X.2016.1146849.
  • Narayanasamy, P., P. Balasundar, S. Senthil, M. R. Sanjay, S. Siengchin, A. Khan, and A. M. Asiri. 2020. Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules 150:793–801. 10.1016/j.ijbiomac.2020.02.134.
  • Paiva, M. C., I. Ammar, A. R. Campos, R. B. Cheikh, and A. M. Cunha. 2007. Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology 67 (6):1132–38. 10.1016/j.compscitech.2006.05.019.
  • Pearl, I., (Ed.), 1967, The Chemistry of Lignin. New York: Marcell Dekker. 10.1002/ange.19680800831.
  • Raja, K., B. Prabu, P. Ganeshan, V. S. Chandra Sekar, and B. NagarajaGanesh. 2020. Characterization Studies of Natural Cellulosic Fibers Extracted from Shwetark Stem. Journal of Natural Fibers 1–12. 10.1080/15440478.2019.1710650.
  • Rekha ., B., and B. NagarajaGanesh. 2020. X-ray diffraction: An efficient method to determine the microfibrillar angle of dried and matured cellulosic fibers. Journal of Natural Fibers 1–8. 10.1080/15440478.2020.1848720.
  • Sarikanat, M., Y. Seki, K. Sever, and C. Durmuskahya. 2014. Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites. Part B Engg 57:180–86. 10.1016/j.compositesb.2013.09.041.
  • Segal, L. G. J. M. A., J. J. Creely, A. E. Martin Jr, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29 (10):786–94. 10.1177/004051755902901003.
  • Shinoj, S., R. Viswanathan, S. Panigrahi, and M. Kochubabu. 2011. Oil palmfibre (OPF) and its composites: A review. Industrial Crops and Products 33 (1):7–22. 10.1016/j.indcrop.2010.09.009.
  • Taylor, D. B., and K. Dhileepan. 2019. Implications of the changing phylogenetic relationships of Acacia sl on the biological control of Vachellia nilotica ssp. indica in Australia. Annals of Applied Biology 174 (2):238–47. 10.1111/aab.12499.
  • Tokoro, R., D. M. Vu, K. Okubo, T. Tanaka, T. Fujii, and T. Fujiura. 2008. How to improve mechanical properties of poly lactic acid with bamboo fibers. Journal of Materials Sciences 43 (2):775–87. 10.1007/s10853-007-1994-y.
  • Yoganandam, K., B. NagarajaGanesh, P. Ganeshan, and K. Raja. 2019b. Thermogravimetric analysis of Calotropis procera fibers and their influence on the thermal conductivity and flammability studies of polymer composites. Materials Research Express 6 (10):105341. 10.1088/2053-1591/ab3bbe.
  • Yoganandam, K., P. Ganeshan, B. Nagaraja Ganesh, and K. Raja. 2019a. Characterization studies on Calotropis procera fibers and their performance as reinforcements in epoxy matrix. Journal of Natural Fibers 1–13. 10.1080/15440478.2019.1588831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.