201
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Exploiting the Amazonian Açaí Palm Leaves Potential as Reinforcement for Cement Composites through Alkali and Bleaching Treatments

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abdul Khalil, H. P. S., M. S. Alwani, M. N. Islam, S. S. Suhaily, R. Dungani, Y. M. H’ng, and M. Jawaid. 2015. The use of bamboo fibres as reinforcements in composites. In Biofiber reinforcements in composite materials, ed. O. Faruk and M. Sain, 488–524. Cambridge: Woodhead Publishing.
  • Al-Oqla, F. M., and S. M. Sapuan. 2014. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production 66:347–54. doi:10.1016/j.jclepro.2013.10.050.
  • Aranda, M. A. G., A. G. De la Torre, and L. León-Reina. 2019. Powder-diffraction characterization of cements. International Tables for Crystallography H:855–867. doi:10.1107/97809553602060000986.
  • Associação Brasileira de Normas Técnicas (ABNT). 1991. NBR 5733: Cimento Portland de alta resistência inicial. Rio de Janeiro.
  • Associação Brasileira de Normas Técnicas (ABNT). 2003. NBR 11941: Madeira - Determinação da densidade básica. Rio de Janeiro.
  • Barneto, A. G., C. Vila, and J. Ariza. 2011. Eucalyptus kraft pulp production: Thermogravimetry monitoring. Thermochimica Acta 520 (1–2):110–20. doi:10.1016/j.tca.2011.03.027.
  • Berto, G. L., and V. Arantes. 2019. Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining. International Journal of Biological Macromolecules 127:637–48. doi:10.1016/j.ijbiomac.2019.01.169.
  • Besbes, I., M. R. Vilar, and S. Bouf. 2011. Nanofibrillated cellulose from TEMPO oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydrate Polymers 84 (3):975–83. doi:10.1016/j.carbpol.2010.12.052.
  • Bilba, K., and M. A. Arsene. 2008. Silane treatment of bagasse fiber for reinforcement of cementitious composites. Composites. Part A, Applied Science and Manufacturing 39 (9):1488–95. doi:10.1016/j.compositesa.2008.05.013.
  • Bufalino, L., A. R. Sena Neto, G. H. D. Tonoli, A. De Souza Fonseca, T. G. Costa, J. M. Marconcini, J. L. Colodette, C. R. G. Labory, and L. M. Mendes. 2015. How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22 (6):3657–72. doi:10.1007/s10570-015-0771-3.
  • Cai, M., H. Takagi, A. N. Nakagaito, Y. Li, and G. I. N. Waterhouse. 2016. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites. Part A, Applied Science and Manufacturing 90:589–97. doi:10.1016/j.compositesa.2016.08.025.
  • César, A. A. S., L. Bufalino, A. S. Tahara, R. G. A. Mesquita, T. M. Souza, L. M. F. Andrade, F. A. Mori, and L. M. Mendes. 2019. Pretreated unbleached cellulose screen reject for cement‑bonded fiberboards. European Journal of Wood and Wood Products 77 (4):581–91. doi:10.1007/s00107-019-01422-x.
  • Chen, W. S., H. Yu, Y. Liu, Y. Hai, M. Zhang, and P. Chen. 2011. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18 (2):433–42. doi:10.1007/s10570-011-9497-z.
  • Chikouche, M. D. L., A. Merrouche, A. Azizi, M. Rokbi, and S. Walter. 2015. Influence of alkali treatment on the mechanical properties of new cane fibre/polyester composites. Journal of Reinforced Plastics and Composites 34 (16):1329–39. doi:10.1177/0731684415591093.
  • Ciolacu, D., F. Ciolacu, and V. I. Popa. 2011. Amorphous cellulose-structure and characterization. Cellulose Chemistry and Technology 45:13–21.
  • Corrêa, A. C., E. D. M. Teixeira, L. A. Pessan, and L. H. C. Mattoso. 2010. Cellulose nanofibers from curaua fibers. Cellulose 17 (6):1183–92. doi:10.1007/s10570-010-9453-3.
  • Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain. 2014. Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering 299:9–26. doi:10.1002/mame.201300008.
  • Ferraz, J. M., C. H. S. Del Menezzi, M. R. Souza, E. Y. A. Okino, and S. A. Martins. 2012. Compatibility of pretreated coir fibres (Cocos nucifera L.) with Portland cement to produce mineral composites. International Journal of Polymer Science 2012:1–7. ID 290571. doi:10.1155/2012/290571.
  • French, A. D. 2014. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21 (2):885–96. doi:10.1007/s10570-013-0030-4.
  • Garcez, M. R., E. O. Garcez, A. O. Machado, and D. A. Gatto. 2016. Cement-wood composites: Effects of wood species, particle treatments and mix proportion. International Journal of Composite Materials 6 (1):1–8. doi:10.5923/j.cmaterials.20160601.01.
  • Gartner, E. M., J. F. Young, D. A. Damidot, and I. Jawed. 2002. Hydration of Portland cement. In Structure and performance of cements, ed. P. Barnes and J. Bensted, 57–113. London: Spon Press.
  • Gutiérrez, M. C., P. D. T. Rosa, M. A. de Paoli, and M. I. Felisberti. 2012. Biocompósitos de acetato de celulose e fibras curtas de Curauá tratadas com CO2 supercrítico. Polímeros 22 (3):295–302. doi:10.1590/S0104-14282012005000037.
  • Hachmi, M. H., . M., G. A. Hakam, A. Sesbou, and A. Sesbou. 2017. Wood-cement inhibition revisited and development of new wood-cement inhibitory and compatibility indices based on twelve wood species. Holzforschung 71 (12):991–98. doi:10.1515/hf-2017-0022.
  • Hajiha, H., and M. Sain. 2015. The use of sugarcane bagasse fibres as reinforcements in composites. In Biofiber reinforcements in composite materials, ed. O. Faruk and M. Sain, 525–49. Cambridge: Woodhead Publishing.
  • Indran, S., and R. E. Raj. 2015. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate Polymers 117:392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Ioelovich, M. 2008. Cellulose as nanostructured polymer: Short Review. BioResources 3:1401–18.
  • Juenger, M. C. G., and H. M. Jennings. 2002. New insights on the effects of sugar on the hydration and microstructure of cement pastes. Cement and Concrete Research 3 (3):393–96. doi:10.1016/S0008-8846(01)00689-5.
  • Kaushik, V. K., A. Kumar, and S. Kalia. 2012. Effect of mercerization and benzoyl peroxide treatment on morphology, thermal stability and crystallinity of sisal fibers. International Journal of Textile Science 1 (6):101–05. doi:10.5923/j.textile.20120106.07.
  • Khan, J. A., and M. A. Khan. 2015. The use of jute fibers as reinforcements in composites. In Biofiber reinforcements in composite material, ed. O. Faruk and M. Sain, 3–34. Cambridge: Woodhead Publishing.
  • Klemm, D., B. Heublein, H. P. Fink, and A. Bohn. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie 44 (22):3358–93. doi:10.1002/anie.200460587.
  • Kocak, D., and S. I. Mistik. 2015. The use of palm leaf fibres as reinforcements in composites. In Biofiber reinforcements in composite materials, ed. O. Faruk and M. Sain, 273–81. Cambridge: Woodhead Publishing.
  • Leão, A. L., I. S. Machado, S. F. Souza, and L. Soriano. 2007. Production of curaua (Ananas erectifolius L.B. Smith) fibers for industrial applications: Characterization and micropropagation. Acta Horticulturae 822:227–38. doi:10.17660/ActaHortic.2009.822.28.
  • Li, X., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15 (1):25–33. doi:10.1007/s10924-006-0042-3.
  • Luo, H., H. Zhang, L. Yue, A. Pizzi, and X. Lu. 2018. Effects of steam explosion on the characteristics of windmill palm fiber and its application to fiberboard. European Journal of Wood and Wood Products 76 (2):601–09. doi:10.1007/s00107-017-1259-7.
  • Macêdo, A. N., A. A. C. Souza, and B. B. P. Neto. 2012. Chapas de cimento madeira com resíduos de indústria madeireira da região Amazônica. Ambiente Construído 12 (2):131–50. doi:10.1590/S1678-86212012000200009.
  • Mansaray, K. G., and A. E. Ghaly. 1998. Thermal degradation of rice husks in nitrogen. Bioresource Technology 65 (1–2):13–20. doi:10.1016/S0960-8524(98)00031-5.
  • Martins, M. A., P. K. Kiyohara, and I. Joékes. 2004. Scanning electron microscopy study of raw and chemically modified sisal fibers. Journal of Applied Polymer Science 94 (6):2333–40. doi:10.1002/app.21203.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2005. Natural fibers, biopolymers, and biocomposites. Boca Ratón: CRC Press.
  • Morán, J. I., V. A. Alvarez, V. P. Cyras, and A. Vázquez. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15 (1):149–59. doi:10.1007/s10570-007-9145-9.
  • Na, B., Z. Wang, H. Wang, and X. Lu. 2014. Wood-cement compatibility review. Wood Research 59:813–26.
  • Oksman, K., A. P. Mathew, D. Bondeson, and I. Kvien. 2006. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology 66 (15):2776–84. doi:10.1016/j.compscitech.2006.03.002.
  • Oliveira, D. N. P. S., P. I. C. Claro, R. R. Freitas, M. A. Martins, T. M. Souza, B. M. Silva E Silva, L. M. Mendes, and L. Bufalino. 2019. Enhancement of the Amazonian Açaí waste fibers through variations of alkali pretreatment parameters. Chemistry Biodiversity 16:e1900275. doi:10.1002/cbdv.201900275.
  • Pacheco-Torgal, F., and S. Jalali. 2011. Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials 25 (2):575–81. doi:10.1016/j.conbuildmat.2010.07.024.
  • Paula, J. E. 1975. Anatomia de Euterpe oleracea Mart. (Palmae da Amazônia). Acta Amazonica 5 (3):265–78. doi:10.1590/1809-43921975053265.
  • Pedrazzi, C., J. L. Colodette, R. C. D. Oliveira, and V. K. D. Wille. 2013. Morphologic evaluation of Eucalyptus kraft pulp fibers with different xylans contents. Scientia Forestalis 41:515–22.
  • Rokbi, M., H. Osmani, A. Imad, and N. Benseddiq. 2011. Effect of chemical treatment on flexure properties of natural fiber reinforced polyester composite. Procedia Engineering 10:2092–97. doi:10.1016/j.proeng.2011.04.346.
  • Rowell, R. M., J. S. Han, and J. S. Rowell. 2000. Characterization and factors effecting fiber properties. In Natural polymers and agrofibers based composites, ed. E. Frollini, A. L. Leao, and H. C. Luiz, 115–34. Mattoso: Embrapa Instrumentação Agropecuária.
  • Sena Neto, A. R., M. A. Araujo, F. V. Souza, L. H. Mattoso, and J. M. Marconcini. 2013. Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Industrial Crops and Products 43:529–37. doi:10.1016/j.indcrop.2012.08.001.
  • Sgriccia, N., M. Hawley, and M. Misra. 2008. Characterization of natural fiber surfaces and natural fiber composites. Composites. Part A, Applied Science and Manufacturing 39 (10):1632–37. doi:10.1016/j.compositesa.2008.07.007.
  • Vo, L. T. T., and P. Navard. 2016. Treatments of plant biomass for cementitious building materials - A review. Construction and Building Materials 121:161–76. doi:10.1016/j.conbuildmat.2016.05.125.
  • Wilson, L., Y. W. Weihong, W. Blasiak, G. R. John, and C. F. Mhilu. 2011. Thermal characterization of tropical biomass feedstocks. Energy Conversion and Management 52 (1):191–98. doi:10.1016/j.enconman.2010.06.058.
  • Yan, L., N. Chouw, and X. Yuan. 2012. Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. Journal of Reinforced Plastics and Composites 31 (6):425–37. doi:10.1177/0731684412439494.
  • Yan, L., B. Kasal, and L. Huang. 2016. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites Part B: Engineering 92:94–132. doi:10.1016/j.compositesb.2016.02.002.
  • Zhao, Y., Y. Wang, J. Y. Zhu, A. Ragauskas, and Y. Deng. 2008. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering 99 (6):1320–28. doi:10.1002/bit.21712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.