161
Views
5
CrossRef citations to date
0
Altmetric
Research Article

An Experimental Investigation on Low-velocity Impact Response of Abaca/Epoxy Bio-composite

ORCID Icon & ORCID Icon

References

  • Ahmad, F., H. S. Choi, and M. K. Park. 2015. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering 300 (1):10–24. doi:10.1002/mame.201400089.
  • Akampumuza, O., P. M. Wambua, A. Ahmed, W. Li, and X. H. Qin. 2017. Review of the applications of biocomposites in the automotive industry. Polymer Composites 38 (11):2553–69. doi:10.1002/pc.23847.
  • ASTM International. 2012. Designation: D7136/D7136M - 12 “Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event.”. In Annual Book of ASTM Standards. 1–16. doi:10.1520/D7136.
  • Balla, V. K., K. H. Kate, J. Satyavolu, P. Singh, and J. G. D. Tadimeti. 2019. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering 174 (May):106956. doi:10.1016/j.compositesb.2019.106956.
  • Bensadoun, F., D. Depuydt, J. Baets, I. Verpoest, and A. W. Van Vuure. 2017. Low velocity impact properties of flax composites. Composite Structures 176:933–44. doi:10.1016/j.compstruct.2017.05.005.
  • Chegdani, F., B. Takabi, M. El Mansori, B. L. Tai, and S. T. S. Bukkapatnam. 2020. Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites. Journal of Manufacturing Processes 54:337–46. doi:10.1016/j.jmapro.2020.03.025.
  • Delaney, M. P., S. Y. K. Fung, and H. Kim. 2018. Dent depth visibility versus delamination damage for impact of composite panels by tips of varying radius. Journal of Composite Materials 52 (19):2691–705. doi:10.1177/0021998317752502.
  • Dhakal, H. N., M. Skrifvars, K. Adekunle, and Z. Y. Zhang. 2014a. Falling weight impact response of jute/methacrylated soybean oil bio-composites under low velocity impact loading. Composites Science and Technology 92:134–41. doi:10.1016/j.compscitech.2013.12.014.
  • Dhakal, H. N., M. Skrifvars, K. Adekunle, and Z. Y. Zhang. 2014b. Falling weight impact response of jute/methacrylated soybean oil bio-composites under low velocity impact loading. Composites Science and Technology 92:134–41. doi:10.1016/j.compscitech.2013.12.014.
  • Doxsee, L. E., P. Rubbrecht, L. Li, I. Verpoest, and M. Scholle. 1993. Delamination growth in composite plates subjected to transverse loads. Journal of Composite Materials 27 (8):764–81. doi:10.1177/002199839302700802.
  • Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science. doi:10.1016/j.progpolymsci.2012.04.003.
  • Habibi, M., S. Selmi, L. Laperrière, H. Mahi, and S. Kelouwani. 2020. Damage analysis of low-velocity impact of non-woven flax epoxy composites. Journal of Natural Fibers 17 (11):1545–54. doi:10.1080/15440478.2019.1584076.
  • Hao, X., H. Zhou, B. Mu, L. Chen, Q. Guo, X. Yi, L. Sun, Q. Wang, and R. Ou. 2020. Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/HDPE composites. Composites Part B: Engineering 185:107778. doi:10.1016/j.compositesb.2020.107778.
  • Hitchen, S. A., and R. M. J. Kemp. 1995. The effect of stacking sequence on impact damage in a carbon fibre/epoxy composite. Composites 26 (3):207–14. doi:10.1016/0010-4361(95)91384-H.
  • James, B. D., W. N. Ruddick, S. E. Vasisth, K. Dulany, S. Sulekar, A. Porras, A. Marañon, J. C. Nino, and J. B. Allen. 2020. Palm readings: Manicaria saccifera palm fibers are biocompatible textiles with low immunogenicity. Materials Science and Engineering C 108:110484. doi:10.1016/j.msec.2019.110484.
  • Khakpour, H., M. R. Ayatollahi, A. Akhavan-Safar, and L. F. M. Da Silva. 2020. Mechanical properties of structural adhesives enhanced with natural date palm tree fibers: Effects of length, density and fiber type. Composite Structures 237:111950. doi:10.1016/j.compstruct.2020.111950.
  • Kuhtz, M., A. Hornig, J. Richter, and M. Gude. 2018. Increasing the structural energy dissipation of laminated fibre composite materials by delamination control. Materials and Design 156:93–102. doi:10.1016/j.matdes.2018.06.039.
  • Kumari, P., and J. Wang. 2019. Tensile After Impact Test of Scarf-Repaired Composite Laminates. Arabian Journal for Science and Engineering 44 (9):7677–97. doi:10.1007/s13369-019-03857-z.
  • Lee, S. M., and P. Zahuta. 1991. Instrumented Impact and Static Indentation of Composites. Journal of Composite Materials 25 (2):204–22. doi:10.1177/002199839102500205.
  • Liang, S., L. Guillaumat, and P. B. Gning. 2015b. Impact behaviour of flax/epoxy composite plates. International Journal of Impact Engineering 80:56–64. doi:10.1016/j.ijimpeng.2015.01.006.
  • Liang, S., L. Guillaumat, and P.-B. Gning. 2015a. Impact behaviour of flax/epoxy composite plates. International Journal of Impact Engineering 80:56–64. doi:10.1016/j.ijimpeng.2015.01.006.
  • Mahesh, V., S. Joladarashi, and S. M. Kulkarni. 2019. An experimental investigation on low-velocity impact response of novel jute/rubber flexible bio-composite. Composite Structures 225:111190. doi:10.1016/j.compstruct.2019.111190.
  • Mittal, V., R. Saini, and S. Sinha. 2016. Natural fiber-mediated epoxy composites – A review. Composites Part B: Engineering 99:425–35. doi:10.1016/J.COMPOSITESB.2016.06.051.
  • Papa, I., M. R. Ricciardi, V. Antonucci, V. Pagliarulo, and V. Lopresto. 2018. Impact behaviour of hybrid basalt/flax twill laminates. Composites Part B: Engineering 153 (July):17–25. doi:10.1016/j.compositesb.2018.07.025.
  • Pickering, K. 2008. Properties and performance of natural-fibre composites. Elsevier. doi:10.1533/9781845694593.
  • Puglia, D., J. Biagiotti, and J. M. Kenny. 2004. A review on natural fibre-based composites - Part II: Application of natural reinforcements in composite materials for automotive industry. Journal of Natural Fibers. doi:10.1300/J395v01n03_03.
  • Ravandi, M., W. S. Teo, L. Q. N. Tran, M. S. Yong, and T. E. Tay. 2017a. Low velocity impact performance of stitched flax/epoxy composite laminates. Composites Part B: Engineering 117:89–100. doi:10.1016/J.COMPOSITESB.2017.02.003.
  • Ravandi, M., W. S. Teo, L. Q. N. Tran, M. S. Yong, and T. E. Tay. 2017b. Low velocity impact performance of stitched flax/epoxy composite laminates. Composites Part B: Engineering 117:89–100. doi:10.1016/j.compositesb.2017.02.003.
  • Ravi Kumar, B. 2019. Experimental and Microstructural Evaluation on Mechanical Properties of Sisal Fibre Reinforced Bio- Composites. Steel and Composite Structures 33 (2):299–306. doi:10.12989/scs.2019.33.2.299.
  • Razi, H., and A. S. Kobayashi. 1993. Delamination in cross-ply laminated composite subjected to low-velocity impact. AIAA Journal 31 (8):1498–502. doi:10.2514/3.11800.
  • Richardson, M. O. W., and M. J. Wisheart. 1996. Review of low-velocity impact properties of composite materials. Composites Part A: Applied Science and Manufacturing 27 (12PART A):1123–31. doi:10.1016/1359-835X(96)00074-7.
  • Sjoblom, P. O., J. T. Hartness, and T. M. Cordell. 1988. On low-velocity impact testing of composite materials. Journal of Composite Materials 22 (1):30–52. doi:10.1177/002199838802200103.
  • Suddell, B. C., and W. J. Evans. 2005. Natural fiber composites in automotive applications. 231–59. doi: 10.1201/9780203508206.ch7.
  • Tan, K. T., N. Watanabe, and Y. Iwahori. 2010. Effect of stitch density and stitch thread thickness on low-velocity impact damage of stitched composites. Composites Part A: Applied Science and Manufacturing 41 (12):1857–68. doi:10.1016/j.compositesa.2010.09.007.
  • Verma, D., and I. Senal. 2019. Natural fiber-reinforced polymer composites: Feasibiliy study for sustainable automotive industries. In Biomass, Biopolymer-Based Materials, and Bioenergy, 103–22. Elsevier. https://doi.org/10.1016/B978-0-08-102426-3.00006-0.
  • Wang, K. F., and B. L. Wang. 2018. A mechanical degradation model for bidirectional natural fiber reinforced composites under hydrothermal ageing and applying in buckling and vibration analysis. Composite Structures 206:594–600. doi:10.1016/j.compstruct.2018.08.063.
  • Xiao, L., G. Wang, S. Qiu, Z. Han, X. Li, and D. Zhang. 2019. Exploration of energy absorption and viscoelastic behavior of CFRPs subjected to low velocity impact. Composites Part B: Engineering 165:247–54. doi:10.1016/J.COMPOSITESB.2018.11.126.
  • Yan, L., N. Chouw, and K. Jayaraman. 2014. Flax fibre and its composites - A review. Composites Part B: Engineering 56:296–317. doi:10.1016/j.compositesb.2013.08.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.