674
Views
17
CrossRef citations to date
0
Altmetric
Review

Recent Progress on Natural Lignocellulosic Fiber Reinforced Polymer Composites: A Review

&

References

  • Akil, H. M., M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, and A. Abu Bakar. 2011. Kenaf Fiber reinforced composites: a review. Materials and Design 32 (8–9):4107–21. doi:10.1016/j.matdes.2011.04.008.
  • Alawar, A., A. M. Hamed, and K. Al-Kaabi. 2009. Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering 40 (7):601–06. doi:10.1016/j.compositesb.2009.04.018.
  • Alhijazi, M., B. Safaei, Q. Zeeshan, M. Asmael, A. Eyvazian, and Z. Qin. 2020a. Recent developments in luffa natural fiber composites: review. Sustainability 12 (18):7683. doi:10.3390/su12187683.
  • Alhijazi, M., Q. Zeeshan, B. Safaei, M. Asmael, and Z. Qin. 2020b. Recent developments in palm fibers composites: a review. Journal of Polymers and the Environment 28 (12):3029–54. Springer. doi:10.1007/s10924-020-01842-4.
  • Ali, A. Z., R. Shaker, A. Khalina, and S. M. Sapuan. 2011. Development of anti-ballistic board from ramie fiber. Polymer - Plastics Technology and Engineering 50 (6):622–34. doi:10.1080/03602559.2010.551381.
  • Al-Khanbashi, A., K. Al-Kaabi, and A. Hammami. 2005. Date palm fibers as polymeric matrix reinforcement: fiber characterization. Polymer Composites 26 (4):486–97. doi:10.1002/pc.20118.
  • Al-Maharma, A., and N. Al-Huniti. 2019. Critical review of the parameters affecting the effectiveness of moisture absorption treatments used for natural composites. Journal of Composites Science 3 (1):27. doi:10.3390/jcs3010027.
  • Al-Oqla, F. M., and S. M. Sapuan. 2014. Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production 66:347–54. doi:10.1016/j.jclepro.2013.10.050.
  • AL-Oqla, F. M., S. M. Sapuan, and M. Jawaid. 2016. Integrated mechanical-economic–environmental quality of performance for natural fibers for polymeric-based composite materials. Journal of Natural Fibers 13 (6):651–59. doi:10.1080/15440478.2015.1102789.
  • Alsaeed, T., B. F. Yousif, and H. Ku. 2013. The potential of using date palm fibres as reinforcement for polymeric composites. Materials and Design 43 (January):177–84. doi:10.1016/j.matdes.2012.06.061.
  • Alshammari, B. A., N. Saba, M. D. Alotaibi, M. F. Alotibi, M. Jawaid, and O. Y. Alothman. 2019. Evaluation of mechanical, physical, and morphological properties of epoxy composites reinforced with different date palm fillers. Materials 12 (13):2145. doi:10.3390/ma12132145.
  • Amiandamhen, S. O., M. Meincken, and L. Tyhoda. 2020. Natural fibre modification and its influence on fibre-matrix interfacial properties in biocomposite materials. Fibers and Polymers 21 (4):677–89. Korean Fiber Society. doi:10.1007/s12221-020-9362-5.
  • Amiri, A., C. Ulven, and S. Huo. 2015. Effect of chemical treatment of flax fiber and resin manipulation on service life of their composites using time-temperature superposition. Polymers 7 (10):1965–78. doi:10.3390/polym7101493.
  • Angelini, L. G., A. Lazzeri, G. Levita, D. Fontanelli, and C. Bozzi. 2000. Ramie (Boehmeria Nivea (L.) Gaud.) and spanish broom (Spartium Junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Industrial Crops and Products 11 (2–3):145–61. doi:10.1016/S0926-6690(99)00059-X.
  • Arbelaiz, A., B. Fernández, G. Cantero, R. Llano-Ponte, A. Valea, and I. Mondragon. 2005. Mechanical properties of flax fibre/polypropylene composites. influence of fibre/matrix modification and glass fibre hybridization. Composites Part A: Applied Science and Manufacturing 36 (12):1637–44. doi:10.1016/j.compositesa.2005.03.021.
  • Ardanuy, M., J. Claramunt, and R. D. T. Filho. 2015. Cellulosic fiber reinforced cement-based composites: a review of recent research. Construction and Building Materials 79: Elsevier Ltd: 115–28. doi:10.1016/j.conbuildmat.2015.01.035.
  • Ariawan, D., M. S. Salim, R. M. Taib, M. Z. Ahmad Thirmizir, and Z. A. Mohd Ishak. 2018. Interfacial characterisation and mechanical properties of heat treated non-woven kenaf fibre and its reinforced composites. Composite Interfaces 25 (2):187–203. doi:10.1080/09276440.2017.1354562.
  • Arib, R. M. N., S. M. Sapuan, M. A. M. M. Hamdan, M. T. Paridah, and H. M. D. K. Zaman. 2004. A literature review of pineapple fibre reinforced polymer composites. Polymers and Polymer Composites 12 (4):341–48. doi:10.1177/096739110401200408.
  • Arumuga prabu, V., M. Uthayakumar, V. Manikandan, N. Rajini, and P. Jeyaraj. 2014. Influence of redmud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites. Materials and Design 64:270–79. doi:10.1016/j.matdes.2014.07.020.
  • Asim, M., K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, M. E. Hoque, and Y. Deng. 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science 2015:1–16. doi:10.1155/2015/950567.
  • Asim, M., M. Jawaid, K. Abdan, and M. R. Ishak. 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering 13 (3):426–35. doi:10.1016/S1672-6529(16)60315-3.
  • Aslan, M., M. Tufan, and T. Küçükömeroğlu. 2018. Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites. Composites Part B: Engineering 140:241–49. doi:10.1016/j.compositesb.2017.12.039.
  • Assarar, M., D. Scida, A. El Mahi, C. Poilâne, and R. Ayad. 2011. Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: flax-fibres and glass-fibres. Materials and Design 32 (2):788–95. doi:10.1016/j.matdes.2010.07.024.
  • Awad, S., Y. Zhou, E. Katsou, L. Yunfeng, and M. Fan. 2020. A critical review on date palm tree (Phoenix Dactylifera L.) fibres and their uses in bio-composites. Waste and Biomass Valorization Springer doi:10.1007/s12649-020-01105-2.
  • Azwa, Z. N., and B. F. Yousif. 2013. Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polymer Degradation and Stability 98 (12):2752–59. doi:10.1016/j.polymdegradstab.2013.10.008.
  • Azzouz, L., Y. Chen, M. Zarrelli, J. M. Pearce, L. Mitchell, G. Ren, and M. Grasso. 2019. Mechanical properties of 3-D printed truss-like lattice biopolymer non-stochastic structures for sandwich panels with natural fibre composite skins. Composite Structures 213 (April):220–30. doi:10.1016/j.compstruct.2019.01.103.
  • Badouard, C., F. Traon, C. Denoual, C. Mayer-Laigle, G. Paës, and A. Bourmaud. 2019. Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Industrial Crops and Products 135 (September):246–50. doi:10.1016/j.indcrop.2019.04.049.
  • Bajpai, P. K., K. Debnath, and I. Singh. 2017. Hole making in natural fiber-reinforced polylactic acid laminates. Journal of Thermoplastic Composite Materials 30 (1):30–46. doi:10.1177/0892705715575094.
  • Balaji, A., B. Karthikeyan, J. Swaminathan, and C. Sundar Raj. 2017. Thermal behavior of cardanol resin reinforced 20 mm long untreated bagasse fiber composites. International Journal of Polymer Analysis and Characterization 5341 (October):1–8. doi:10.1080/1023666X.2017.1387448.
  • Balla, V. K., J. G. D. Tadimeti, K. Sudan, J. Satyavolu, and K. H. Kate. 2020. First report on fabrication and characterization of soybean hull fiber: polymer composite filaments for fused filament fabrication. Progress in Additive Manufacturing (June):1–14. doi:10.1007/s40964-020-00138-2.
  • Bernard, M., A. Khalina, R. Aidy Ali, J. M. Faizal, K. S. Hasnah, and A. B. Sanuddin. 2011. The effect of processing parameters on the mechanical properties of kenaf fibre plastic composite. Materials and Design 32 (2):1039–43. doi:10.1016/j.matdes.2010.07.014.
  • Bhattacharjee, S., and D. S. Bajwa. 2018. Degradation in the mechanical and thermo-mechanical properties of natural fiber filled polymer composites due to recycling. Construction and Building Materials 172 (May):1–9. doi:10.1016/j.conbuildmat.2018.03.010.
  • Biagiotti, J., D. Puglia, and J. M. Kenny. 2004. A review on natural fibre-based composites - part i: structure, processing and properties of vegetable fibres. Journal of Natural Fibers 1 (2):37–68. Taylor & Francis Group. doi:10.1300/J395v01n02_04.
  • Bledzki, A. K., H. P. Fink, and K. Specht. 2004. Unidirectional hemp and flax EP- and PP-composites: influence of defined fiber treatments. Journal of Applied Polymer Science 93 (5):2150–56. doi:10.1002/app.20712.
  • Bledzki, A. K., P. Franciszczak, Z. Osman, and M. Elbadawi. 2015. Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Industrial Crops and Products 70 (August):91–99. doi:10.1016/j.indcrop.2015.03.013.
  • Bledzki, A. K., and J. Gassan. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science (Oxford) Elsevier Science Ltd: 00018–5. doi:10.1016/S0079-6700(98).
  • Bledzki, A. K., S. Reihmane, and J. Gassan. 1996. Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science 59 (8):1329–36. doi:10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0.
  • Boccardi, S., G. M. Carlomagno, C. Meola, P. Russo, and G. Simeoli. 2018. The contribution of infrared thermography in the characterization of jute based composites. Composite Structures 190:119–26. doi:10.1016/j.compstruct.2018.02.014.
  • Bogoeva-Gaceva, G., M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M. E. Errico. 2007. Natural fiber eco-composites. Polymer Composites 28 (1):98–107. doi:10.1002/pc.20270.
  • Cao, Y., K. Goda, and S. Shibata. 2007. Development and mechanical properties of bagasse fiber reinforced composites. Advanced Composite Materials: The Official Journal of the Japan Society of Composite Materials 16 (4):283–98. doi:10.1163/156855107782325195.
  • Chen, D., L. Jing, and J. Ren. 2010. Study on sound absorption property of ramie fiber reinforced poly(l-lactic acid) composites: morphology and properties. Composites Part A: Applied Science and Manufacturing 41 (8):1012–18. doi:10.1016/j.compositesa.2010.04.007.
  • Chen, H. ‐. L., and R. S. Porter. 1994. Composite of polyethylene and kenaf, a natural cellulose fiber. Journal of Applied Polymer Science 54 (11):1781–83. doi:10.1002/app.1994.070541121.
  • Chollakup, R., R. Tantatherdtam, S. Ujjin, and K. Sriroth. 2011. Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. Journal of Applied Polymer Science 119 (4):1952–60. doi:10.1002/app.32910.
  • Çomak, B., A. Bideci, and Ö. S. Bideci. 2018. Effects of hemp fibers on characteristics of cement based mortar. Construction and Building Materials 169:794–99. doi:10.1016/j.conbuildmat.2018.03.029.
  • Dayo, A. Q., B. C. Gao, J. Wang, W. B. Liu, M. Derradji, A. H. Shah, and A. A. Babar. 2017. Natural hemp fiber reinforced polybenzoxazine composites: curing behavior, mechanical and thermal properties. Composites Science and Technology 144 (May):114–24. doi:10.1016/j.compscitech.2017.03.024.
  • Dhakal, H. N., and Z. Zhang. 2015. The use of hemp fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials Elsevier Inc: 86–103. doi:10.1533/9781782421276.1.86.
  • Dhanasekaran, S., and G. Balachandran. 2008. “Structural behavior of jute fiber composites-a review.” SAE Technical Papers, no. 724. 10.4271/2008-01-2653.
  • Din, G. Y., and E. Cohen. 2013. Modeling municipal solid waste management in africa: case study of matadi, the democratic republic of Congo. Journal of Environmental Protection 4 (5):435–45. doi:10.4236/jep.2013.45052.
  • Dittenber, D. B., and H. V. S. Gangarao. 2012. Critical review of recent publications on use of natural composites in infrastructure. In Composites part a: applied science and manufacturing43 (8): 1419-1429, Elsevier. doi:10.1016/j.compositesa.2011.11.019.
  • Dobah, Y., M. Bourchak, A. Bezazi, A. Belaadi, and F. Scarpa. 2016. Multi-axial mechanical characterization of jute fiber/polyester composite materials. Composites Part B: Engineering 90 (April):450–56. doi:10.1016/j.compositesb.2015.10.030.
  • Duan, J., W. Hongwu, F. Wuchang, and M. Hao. 2018. Mechanical properties of hybrid sisal/coir fibers reinforced polylactide biocomposites. Polymer Composites 39 (April):E188–99. doi:10.1002/pc.24489.
  • Dwivedi, U. K., and N. Chand. 2009. Influence of MA-g-PP on abrasive wear behaviour of chopped sisal fibre reinforced polypropylene composites. Journal of Materials Processing Technology 209 (12–13):5371–75. doi:10.1016/j.jmatprotec.2009.04.008.
  • Edeerozey, A. M. M., H. M. Akil, A. B. Azhar, and M. I. Zainal Ariffin. 2007. Chemical modification of kenaf fibers. Materials Letters 61 (10):2023–25. doi:10.1016/j.matlet.2006.08.006.
  • El-Baky, A., A. Marwa, M. Megahed, H. H. El-Saqqa, and A. E. Alshorbagy. 2019. Mechanical properties evaluation of sugarcane bagasse-glass/ polyester composites. Journal of Natural Fibers 1–18. doi:10.1080/15440478.2019.1687069.
  • El-Haggar, S. M. 2007. Sustainability of agricultural and rural waste management. In Sustainable industrial design and waste management, 223–60. California, US: Academic Press. doi:10.1016/b978-012373623-9/50009-5.
  • Elkhaoulani, A., F. Z. Arrakhiz, K. Benmoussa, R. Bouhfid, and A. Qaiss. 2013. Mechanical and thermal properties of polymer composite based on natural fibers: moroccan hemp fibers/polypropylene. Materials and Design 49 (August):203–08. doi:10.1016/j.matdes.2013.01.063.
  • El-Sabbagh, A. 2014. Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Composites Part B: Engineering 57:126–35. doi:10.1016/j.compositesb.2013.09.047.
  • Elseify, L. A., M. Midani, L. A. Shihata, and H. El-Mously. 2019. Review on cellulosic fibers extracted from date palms (Phoenix Dactylifera L.) and their applications. Cellulose 26 (4):2209–32. Springer Netherlands. doi:10.1007/s10570-019-02259-6.
  • Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain. 2014. Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering 299 (1):9–26. doi:10.1002/mame.201300008.
  • Fiore, V., T. Scalici, L. Calabrese, A. Valenza, and E. Proverbio. 2016a. Effect of external basalt layers on durability behaviour of flax reinforced composites. Composites Part B: Engineering 84 (January):258–65. doi:10.1016/j.compositesb.2015.08.087.
  • Fiore, V., T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, and A. Valenza. 2016b. A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering 85:150–60. doi:10.1016/j.compositesb.2015.09.028.
  • Gassan, J. 2002. A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Composites - Part A: Applied Science and Manufacturing 33 (3):369–74. doi:10.1016/S1359-835X(01)00116-6.
  • Gassan, J., and A. K. Bledzki. 1997. The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites Part A: Applied Science and Manufacturing 28 (12):1001–05. doi:10.1016/S1359-835X(97)00042-0.
  • George, J., S. S. Bhagawan, N. Prabhakaran, and S. Thomas. 1995. Short pineapple-leaf-fiber-reinforced low-density polyethylene composites. Journal of Applied Polymer Science 57 (7):843–54. doi:10.1002/app.1995.070570708.
  • Gheith, M. H., M. A. Aziz, W. Ghori, N. Saba, M. Asim, M. Jawaid, and O. Y. Alothman. 2019. Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. Journal of Materials Research and Technology 8 (1):853–60. doi:10.1016/j.jmrt.2018.06.013.
  • Gholampour, A., and T. Ozbakkaloglu. 2020. A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of materials science, 55(3), 829-892. Springer US. doi:10.1007/s10853-019-03990-y.
  • Goda, K. M., S. Sreekala, A. Gomes, T. Kaji, and J. Ohgi. 2006. Improvement of plant based natural fibers for toughening green composites-effect of load application during mercerization of ramie fibers. Composites Part A: Applied Science and Manufacturing 37 (12):2213–20. doi:10.1016/j.compositesa.2005.12.014.
  • Gokul, K., T. Ram Prabhu, and T. Rajasekaran. 2017. Processing and evaluation of mechanical properties of sugarcane fiber reinforced natural composites. Transactions of the Indian Institute of Metals 70 (10):2537–46. doi:10.1007/s12666-017-1116-8.
  • Grohens, Y., O. Sire, and C. Baley. 2006. “Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin.„ Composites Part A: Applied Science and Manufacturing 37(10): 1626–1637. doi:10.1016/j.compositesa.2005.10.014.
  • Gulati, D., and M. Sain. 2006. Fungal-modification of natural fibers: a novel method of treating natural fibers for composite reinforcement. Journal of Polymers and the Environment 14 (4):347–52. doi:10.1007/s10924-006-0030-7.
  • Henriksson, G., D. E. Akin, R. T. Hanlin, C. Rodriguez, D. D. Archibald, L. L. Rigsby, and K. E. L. Eriksson. 1997. Identification and retting efficiencies of fungi isolated from dew- retted flax in the United States and Europe. Applied and Environmental Microbiology 63 (10):3950–56. doi:10.1128/aem.63.10.3950-3956.1997.
  • Hepworth, D. G., R. N. Hobson, D. M. Bruce, and J. W. Farrent. 2000. Use of unretted hemp fibre in composite manufacture. Composites Part A: Applied Science and Manufacturing 31 (11):1279–83. doi:10.1016/S1359-835X(00)00098-1.
  • Hinchcliffe, S. A., K. M. Hess, and S. Wil V. 2016. Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Composites Part B: Engineering 95 (June):346–54. doi:10.1016/j.compositesb.2016.03.089.
  • Ho, M.-P., H. Wang, J.-H. Lee, C.-K. Ho, K.-T. Lau, J. Leng, and D. Hui. 2012. Composites : Part B critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering 43 (8):3549–62. doi:10.1016/j.compositesb.2011.10.001.
  • Hornsby, P. R., E. Hinrichsen, and K. Tarverdi. 1997. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part I fibre characterization. Journal of Materials Science 32 (2):443–49. doi:10.1023/A:1018521920738.
  • Hughes, M., J. Carpenter, and C. Hill. 2007. Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. Journal of Materials Science 42 (7):2499–511. doi:10.1007/s10853-006-1027-2.
  • Hujuri, U., S. K. Chattopadhay, R. Uppaluri, and A. K. Ghoshal. 2008. Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short-pineapple-leaf-fiber-reinforced polypropylene composites. Journal of Applied Polymer Science 107 (3):1507–16. doi:10.1002/app.27156.
  • Ibrahim, H., M. Farag, H. Megahed, and S. Mehanny. 2014. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydrate Polymers 101 (1):11–19. doi:10.1016/j.carbpol.2013.08.051.
  • Ibrahim, I. D., T. Jamiru, E. R. Sadiku, W. K. Kupolati, S. C. Agwuncha, and G. Ekundayo. 2016. Mechanical properties of sisal fibre-reinforced polymer composites: a review. Composite Interfaces 23 (1):15–36. doi:10.1080/09276440.2016.1087247.
  • Jaafar, J., J. P. Siregar, S. M. Salleh, M. H. M. Hamdan, T. Cionita, and T. Rihayat. 2019. Important considerations in manufacturing of natural fiber composites: a review. International Journal of Precision Engineering and Manufacturing - Green Technology Korean Society for Precision Engineering doi:10.1007/s40684-019-00097-2.
  • Jain, S., and R. Kumar. 1994. Processing of bamboo fiber reinforced plastic composites. Materials and Manufacturing Processes 9 (5):813–28. doi:10.1080/10426919408934955.
  • Jawaid, M., and H. P. S. Abdul Khalil. 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydrate Polymers 86 (1):1–18. Elsevier. doi:10.1016/j.carbpol.2011.04.043.
  • John, M. J., and R. D. Anandjiwala. 2009. Chemical modification of flax reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 40 (4):442–48. doi:10.1016/j.compositesa.2009.01.007.
  • Joseph, K., C. P. Sabu Thomas, and M. Brahmakumar. 1993. Tensile properties of short sisal fiber‐reinforced polyethylene composites. Journal of Applied Polymer Science 47 (10):1731–39. doi:10.1002/app.1993.070471003.
  • Joseph, P. V., K. Joseph, and S. Thomas. 1999. Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Composites Science and Technology 59 (11):1625–40. doi:10.1016/S0266-3538(99)00024-X.
  • Joseph, S., P. Koshy, and S. Thomas. 2005. The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Composite Interfaces 12 (6):581–600. doi:10.1163/1568554054915183.
  • Kalambettu, A., A. Damodaran, S. Dharmalingam, and M. T. Vallam. 2015. Evaluation of biodegradation of pineapple leaf fiber reinforced PVA composites. Journal of Natural Fibers 12 (1):39–51. doi:10.1080/15440478.2014.880104.
  • Kalia, S. B., S. Kaith, and I. Kaur. 2009. Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review. Polymer Engineering and Science 49 (7):1253–72. doi:10.1002/pen.21328.
  • Karmaker, A. C., and G. Hinrichsen. 1991. Processing and characterization of jute fiber reinforced thermoplastic polymers. Polymer-Plastics Technology and Engineering 30 (5–6):609–29. doi:10.1080/03602559108019223.
  • Karmaker, A. C., A. Hoffmann, and G. Hinrichsen. 1994. Influence of water uptake on the mechanical properties of jute fiber‐reinforced polypropylene. Journal of Applied Polymer Science 54 (12):1803–07. doi:10.1002/app.1994.070541203.
  • Karus, M., and M. Kaup. 2002. Natural fibres in the European automotive industry. Journal of Industrial Hemp 7 (1):119–31. doi:10.1300/J237v07n01_10.
  • Kenned, J. J., K. Sankaranarayanasamy, and C. Suresh Kumar. 2020. Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: a review. Polymers and Polymer Composites (July):096739112094241. doi:10.1177/0967391120942419.
  • Khan, M. Z. R., S. K. Srivastava, and M. K. Gupta. 2018. Tensile and flexural properties of natural fiber reinforced polymer composites: a review. Journal of Reinforced Plastics and Composites 37 (24):1435–55. doi:10.1177/0731684418799528.
  • Kord, B., and D. T. Haratbar. 2016. Influence of fiber surface treatment on the physical and mechanical properties of wood flour-reinforced polypropylene bionanocomposites. Journal of Thermoplastic Composite Materials 29 (7):979–92. doi:10.1177/0892705714551592.
  • Koronis, G., A. Silva, and M. Fontul. 2013. Green composites: a review of adequate materials for automotive applications. Composites Part B: Engineering 44 (1):120–27. doi:10.1016/j.compositesb.2012.07.004.
  • Kumar, K. P., and A. S. J. Sekaran. 2014. Some natural fibers used in polymer composites and their extraction processes: a review. Journal of Reinforced Plastics and Composites 33 (20):1879–92. doi:10.1177/0731684414548612.
  • Kumar, R., and A. Anand. 2019. Fabrication and mechanical characterization of indian ramie reinforced polymer composites. Materials Research Express 6 (5):055303. doi:10.1088/2053-1591/aaff12.
  • Le, D. A., M. Castro, R. Bevan, and N. Martin. 2016. 3D Printing of wood fibre biocomposites: from mechanical to actuation functionality. Materials and Design 96 (April):106–14. doi:10.1016/j.matdes.2016.02.018.
  • Lee, B. H., H. S. Kim, S. Lee, H. J. Kim, and J. R. Dorgan. 2009. Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Composites Science and Technology 69 (15–16):2573–79. doi:10.1016/j.compscitech.2009.07.015.
  • Lee, C. H., A. Khalina, S. H. Lee, and M. Liu. 2020. A comprehensive review on bast fibre retting process for optimal performance in fibre-reinforced polymer composites. Advances in Materials Science and Engineering 2020: Hindawi Limited: 1–27. doi:10.1155/2020/6074063.
  • Li, M., P. Yunqiao, V. M. Thomas, C. G. Yoo, S. Ozcan, Y. Deng, K. Nelson, and A. J. Ragauskas. 2020. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering 200: Elsevier Ltd: 108254. doi:10.1016/j.compositesb.2020.108254.
  • Li, Q., L. Yan, and L. Zhou. 2017. Nanoscale evaluation of multi-layer interfacial mechanical properties of sisal fiber reinforced composites by nanoindentation technique. Composites Science and Technology 152:211–21. doi:10.1016/j.compscitech.2017.09.030.
  • Li, S. H., Q. Y. Zeng, Y. L. Xiao, S. Y. Fu, and B. L. Zhou. 1995. Biomimicry of bamboo bast fiber with engineering composite materials. Materials Science and Engineering C 3 (2):125–30. doi:10.1016/0928-4931(95)00115-8.
  • Li, Y., Y. W. Mai, and Y. Lin. 2000. Sisal fibre and its composites: a review of recent developments. Composites Science and Technology 60 (11):2037–55. doi:10.1016/S0266-3538(00)00101-9.
  • Li, Y., L. Qian, and M. Hao. 2015. The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing 72 (May):40–48. doi:10.1016/j.compositesa.2015.01.029.
  • Li, Y., S. Moyo, Z. Ding, Z. Shan, and Y. Qiu. 2013. Helium plasma treatment of ethanol-pretreated ramie fabrics for improving the mechanical properties of ramie/polypropylene composites. Industrial Crops and Products 51:299–305. doi:10.1016/j.indcrop.2013.09.028.
  • Lilly, M. J., P. Sivashankari, M. Sangeetha, K. R. Kavitha, and S. Prakash. 2020. Genetic optimization of machining parameters affecting thrust force during drilling of pineapple fiber composite plates–an experimental approach. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.1788484.
  • Liu, K., H. Takagi, R. Osugi, and Z. Yang. 2012. Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Composites Part A: Applied Science and Manufacturing 43 (8):1234–41. doi:10.1016/j.compositesa.2012.02.020.
  • Liu, M., A. Thygesen, J. Summerscales, and A. S. Meyer. 2017. Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: a review. Industrial Crops and Products 108: Elsevier B.V: 660–83. doi:10.1016/j.indcrop.2017.07.027.
  • Liu, W., L. T. Drzal, A. K. Mohanty, and M. Misra. 2007. Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Composites Part B: Engineering 38 (3):352–59. doi:10.1016/j.compositesb.2006.05.003.
  • Lobo, M. G., and R. E. Paull. 2017. Handbook of pineapple technology. In Handbook of pineapple technology: postharvest science, processing and nutrition, M. G. Lobo and R. E. Paull. ed., Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781118967355.
  • Loh, Y. R., D. Sujan, M. E. Rahman, and C. A. Das. 2013. Review sugarcane bagasse - the future composite material: a literature review. Resources, Conservation and Recycling 75:14–22. doi:10.1016/j.resconrec.2013.03.002.
  • Lotfi, A., L. Huaizhong, D. V. Dao, and G. Prusty. 2021. Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials 34 (2):238–84. doi:10.1177/0892705719844546.
  • Lu, Y., L. Weng, and X. Cao. 2006. Morphological, thermal and mechanical properties of ramie crystallites - reinforced plasticized starch biocomposites. Carbohydrate Polymers 63 (2):198–204. doi:10.1016/j.carbpol.2005.08.027.
  • Ma, G., L. Yan, W. Shen, D. Zhu, L. Huang, and B. Kasal. 2018. Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: plant-based jute vs. mineral-based basalt. Composites Part B: Engineering 153:398–412. doi:10.1016/j.compositesb.2018.09.015.
  • Mahjoub, R., J. M. Yatim, A. R. M. Sam, and S. H. Hashemi. 2014a. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials 55 (March):103–13. doi:10.1016/j.conbuildmat.2014.01.036.
  • Mahjoub, R., J. M. Yatim, A. R. M. Sam, and M. Raftari. 2014b. Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites. Materials and Design 64:640–49. doi:10.1016/j.matdes.2014.08.010.
  • Mahmud, S., K. M. Faridul Hasan, M. A. Jahid, K. Mohiuddin, R. Zhang, and J. Zhu. 2021. Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal of Materials Science 56 (12):7231–64. Springer. doi:10.1007/s10853-021-05774-9.
  • Manalo, A. C., E. Wani, N. A. Zukarnain, W. Karunasena, and K. T. Lau. 2015. Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites. Composites Part B: Engineering 80:73–83. doi:10.1016/j.compositesb.2015.05.033.
  • Manigandan, S., P. Gunasekar, S. Nithya, J. Devipriya, W. S. R. Saravanan, and S. Venkatesan. 2018. Acoustic and vibration analysis of pineapple leaf fibre laminates for aircraft applications. International Journal of Ambient Energy. doi:10.1080/01430750.2018.1530138.
  • Mann, G. S., L. P. Singh, P. Kumar, and S. Singh. 2020. Green composites: a review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials 33 (8):1145–71. doi:10.1177/0892705718816354.
  • Marques, M. D. F. V., R. P. Melo, R. D. S. Araujo, J. D. N. Lunz, and V. D. O. Aguiar. 2014. Improvement of mechanical properties of natural fiber-polypropylene composites using successive alkaline treatments. Journal of Applied Polymer Science 132 (12):n/a–n/a. doi:10.1002/app.41710.
  • Marsyahyo, E., H. S. B. R. Jamasri, and Soekrisno. 2009. Preliminary investigation on bulletproof panels made from ramie fiber reinforced composites for NIJ level II, IIA, and IV. Journal of Industrial Textiles 39 (1):13–26. doi:10.1177/1528083708098913.
  • Masirek, R., Z. Kulinski, D. Chionna, E. Piorkowska, and M. Pracella. 2007. Composites of poly(L-Lactide) with hemp fibers: morphology and thermal and mechanical properties. Journal of Applied Polymer Science 105 (1):255–68. doi:10.1002/app.26090.
  • Mastura, M. T., S. M. Sapuan, M. R. Mansor, and A. A. Nuraini. 2017. Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. International Journal of Advanced Manufacturing Technology 89 (5–8):2203–19. doi:10.1007/s00170-016-9217-9.
  • Matsuzaki, R., M. Ueda, M. Namiki, T. K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, and Y. Hirano. 2016. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific Reports 6 (March). doi: 10.1038/srep23058.
  • McMullen, P. 1984. Fibre/resin composites for aircraft primary structures: a short history, 1936-1984. Composites, 15 (3):222–30. https://doi.org/10.1016/0010-4361(84)90279-9.
  • Mehta, G., L. T. Drzal, A. K. Mohanty, and M. Misra. 2006. Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. Journal of Applied Polymer Science 99 (3):1055–68. doi:10.1002/app.22620.
  • Merlini, C., V. Soldi, and G. M. O. Barra. 2011. Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing 30 (8):833–40. doi:10.1016/j.polymertesting.2011.08.008.
  • Mishra, S., M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty. 2001. Potentiality of pineapple leaf fibre as reinforcement in palf-polyester composite: surface modification and mechanical performance. Journal of Reinforced Plastics and Composites 20 (4):321–34. doi:10.1177/073168401772678779.
  • Mishra, S., S. S. Tripathy, M. Misra, A. K. Mohanty, and S. K. Nayak. 2002. Novel eco-friendly biocomposites: biofiber reinforced biodegradable polyester amide composites—fabrication and properties evaluation. Journal of Reinforced Plastics and Composites 21 (1):55–70. doi:10.1106/073168402024282.
  • Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen. 2004. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering 289 (11):955–74. doi:10.1002/mame.200400132.
  • Mohammed, L., M. N. M. Ansari, G. Pua, M. Jawaid, and M. Saiful Islam. 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science 2015. doi:10.1155/2015/243947.
  • Mohanty, A. K., M. Misra, and G. Hinrichsen. 2000. Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering 276-277 (1):1–24. John Wiley & Sons, Ltd. doi:10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.
  • Mohanty, A. K., M. Misra, L. T. Drzal, S. E. Selke, B. R. Harte, and G. Hinrichsen. 2005. Natural fibers, biopolymers, and biocomposites: an introduction. natural fibers, biopolymers, and biocomposites. CRC Press, Taylor and Francis Group.
  • Mohanty, S., S. K. Nayak, S. K. Verma, and S. S. Tripathy. 2004. Effect of MAPP as coupling agent on the performance of Sisal–PP composites. Journal of Reinforced Plastics and Composites 23 (18):2047–63. doi:10.1177/0731684404041711.
  • Mominul Haque, M., M. N. Islam, M. M. Huque, M. Hasan, M. S. Islam, and M. S. Islam. 2010. Coir fiber reinforced polypropylene composites: physical and mechanical properties. Advanced Composite Materials 19 (1):91–106. doi:10.1163/092430409X12530067339325.
  • Monteiro, S. N., V. S. Candido, F. O. Braga, L. T. Bolzan, R. P. Weber, and J. W. Drelich. 2016a. Sugarcane bagasse waste in composites for multilayered armor. European Polymer Journal 78:173–85. doi:10.1016/j.eurpolymj.2016.03.031.
  • Monteiro, S. N., T. L. Milanezi, L. H. L. Louro, É. P. Lima, F. O. Braga, A. V. Gomes, and J. W. Drelich. 2016b. Novel ballistic ramie fabric composite competing with KevlarTM fabric in multilayered armor. Materials and Design 96:263–69. doi:10.1016/j.matdes.2016.02.024.
  • Motaung, T. E., and L. Z. Linganiso. 2018. Critical review on agrowaste cellulose applications for biopolymers. International Journal of Plastics Technology 22 (2):185–216. Springer. doi:10.1007/s12588-018-9219-6.
  • Moudood, A., A. Rahman, H. M. Khanlou, W. Hall, A. Öchsner, and G. Francucci. 2019. Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites. Composites Part B: Engineering 171 (March):284–93. doi:10.1016/j.compositesb.2019.05.032.
  • Muda, M., K. Hafiz, and F. Mustapha. 2018. Composite patch repair using natural fiber for aerospace applications, sustainable composites for aerospace applications. sustainable composites for aerospace applications. Woodhead Publishing Series in Composites Science and Engineering, United Kingdom: Elsevier Ltd. 10.1016/b978-0-08-102131-6.00009-8.
  • Mueller, D. H., and A. Krobjilowski. 2003. New discovery in the properties of composites reinforced with natural fibers. Journal of Industrial Textiles 33 (2):111–29. doi:10.1177/152808303039248.
  • Mulinari, D. R., J. de Paula Cipriano, M. Rosa Capri, and A. Torres Brandão. 2018. Influence of surgarcane bagasse fibers with modified surface on polypropylene composites. Journal of Natural Fibers 15 (2):174–82. doi:10.1080/15440478.2016.1266294.
  • Muthu, J., J. Priscilla, A. Odeshi, and N. Kuppen. 2018. Characterisation of coir fibre hybrid composites reinforced with clay particles and glass spheres. Journal of Composite Materials 52 (5):593–607. doi:10.1177/0021998317712568.
  • Mwesigwa, R., and J. I. Mwasiagi. 2018. Use of regression models to study the factors affecting the tensile and compressive properties of banana bio-composites. Journal of Natural Fibers 1–9. doi:10.1080/15440478.2018.1448320.
  • Nabi Saheb, D., and J. P. Jog. 1999. Natural fiber polymer composites: a review. Advances in Polymer Technology 18 (4):351–63. doi:10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X.
  • Nam, S., and A. N. Netravali. 2006. Green composites. I. physical properties of ramie fibers for environment-friendly green composites. Fibers and Polymers 7 (4):372–79. doi:10.1007/BF02875769.
  • Naveen, J., M. Jawaid, P. Amuthakkannan, and M. Chandrasekar. 2019. Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing Series in Composites Science and Engineering, United Kingdom: Elsevier Ltd. 10.1016/B978-0-08-102292-4.00021-7.
  • Nishino, T., K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki. 2003. Kenaf reinforced biodegradable composite. Composites Science and Technology 63 (9):1281–86. doi:10.1016/S0266-3538(03)00099-X.
  • Orue, A., A. Jauregi, U. Unsuain, J. Labidi, A. Eceiza, and A. Arbelaiz. 2016. The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(Lactic Acid)/Sisal fiber composites. Composites Part A: Applied Science and Manufacturing 84:186–95. doi:10.1016/j.compositesa.2016.01.021.
  • Osman, M. R., H. M. Akil, and Z. A. Mohd Ishak. 2013. Effect of hybridization on the water absorption behaviour of pultruded kenaf fibre-reinforced polyester composites. Composite Interfaces 20 (7):517–28. doi:10.1080/15685543.2013.811182.
  • Pailoor, S., H. N. Narasimha Murthy, P. Hadimani, and T. N. Sreenivasa. 2019. Effect of chopped/continuous fiber, coupling agent and fiber ratio on the mechanical properties of injection-molded jute/polypropylene composites. Journal of Natural Fibers 16 (1):126–36. doi:10.1080/15440478.2017.1410510.
  • Pandey, J. K., S. H. Ahn, C. S. Lee, A. K. Mohanty, and M. Misra. 2010. Recent advances in the application of natural fiber based composites. Macromolecular Materials and Engineering 295 (11):975–89. doi:10.1002/mame.201000095.
  • Panicker, A. M., K. A. R. Rose Maria, and T. O. Varghese. 2019. Bit coir fiber and sugarcane bagasse fiber reinforced eco-friendly polypropylene composites: development and property evaluation thereof. Journal of Thermoplastic Composite Materials. doi:10.1177/0892705718820403.
  • Pappu, A., K. L. Pickering, and V. K. Thakur. 2019. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Industrial Crops and Products 137 (October):260–69. doi:10.1016/j.indcrop.2019.05.040.
  • Paramasivam, T., and A. P. J. Abdul Kalam. 1974. On the study of indigenous natural-fibre composites. Fibre Science and Technology 7 (2):85–88. doi:10.1016/0015-0568(74)90020-7.
  • Peng, X., M. Fan, J. Hartley, and M. Al-Zubaidy. 2012. Properties of natural fiber composites made by pultrusion process. Journal of Composite Materials 46 (2):237–46. doi:10.1177/0021998311410474.
  • Pereira, A. C., S. N. Monteiro, F. Salgado de Assis, F. Muylaert Margem, F. Santos da Luz, and B. Fábio de Oliveira. 2017. Charpy impact tenacity of epoxy matrix composites reinforced with aligned jute fibers. Journal of Materials Research and Technology 6 (4):312–16. doi:10.1016/j.jmrt.2017.08.004.
  • Phillips, S., and L. Lessard. 2012. Application of natural fiber composites to musical instrument top plates. Journal of Composite Materials 46 (2):145–54. doi:10.1177/0021998311410497.
  • Pickering, K. L., M. G. Aruan Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Plackett, D., T. L. Andersen, W. B. Pedersen, and L. Nielsen. 2003. Biodegradable composites based on L-polylactide and jute fibres. Composites Science and Technology 63 (9):1287–96. doi:10.1016/S0266-3538(03)00100-3.
  • Pothan, L. A., J. George, and S. Thomas. 2002. Effect of fiber surface treatments on the fiber-matrix interaction in banana fiber reinforced polyester composites. Composite Interfaces 9 (4):335–53. doi:10.1163/156855402760194692.
  • Pothan, L. A., Z. Oommen, and S. Thomas. 2003. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology 63 (2):283–93. doi:10.1016/S0266-3538(02)00254-3.
  • Pothan, L. A., S. Thomas, and N. R. Neelakantan. 1997. Short banana fiber reinforced polyester composites: mechanical, failure and aging characteristics. Journal of Reinforced Plastics and Composites 16 (8):744–65. doi:10.1177/073168449701600806.
  • Prasad, N., V. K. Agarwal, and S. Sinha. 2016. Banana fiber reinforced low-density polyethylene composites: effect of chemical treatment and compatibilizer addition. Iranian Polymer Journal (English Edition) 25 (3):229–41. doi:10.1007/s13726-016-0416-x.
  • Queiroz, H. F. M. D., M. D. Banea, and D. K. K. Cavalcanti. 2021. Adhesively bonded joints of jute, glass and hybrid jute/glass fibre-reinforced polymer composites for automotive industry. Applied Adhesion Science 9 (1):2. doi:10.1186/s40563-020-00131-6.
  • Rafiquzzaman, M., M. Maksudul Islam, L. K. Sarkar, A. A. Choudhury, and M. Ektiar Sikder. 2017. Mechanical property evaluation of woven jute – coir fiber based polymer composites. International Journal of Plastics Technology 21 (2):278–96. doi:10.1007/s12588-017-9184-5.
  • Rahman, M., S. Das, and M. Hasan. 2018. Advances in materials and processing technologies mechanical properties of chemically treated banana and pineapple leaf fiber reinforced hybrid polypropylene composites mechanical properties of chemically treated banana and pineapple leaf fiber reinforced. Advances in Materials and Processing Technologies 698:1–11. doi:10.1080/2374068X.2018.1468972.
  • Ramamoorthy, S. K., M. Skrifvars, and A. Persson. 2015. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polymer Reviews 55 (1):107–62. Taylor and Francis Inc. doi:10.1080/15583724.2014.971124.
  • Razak, N., I. Abdul, N. A. Ibrahim, N. Zainuddin, M. Rayung, and W. Z. Saad. 2014. The Influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites. Molecules 19 (3):2957–68. doi:10.3390/molecules19032957.
  • Reulier, M., R. Perrin, and L. Avérous. 2016. Biocomposites based on chemically modified cellulose fibers with renewable fatty-acid-based thermoplastic systems: effect of different fiber treatments. Journal of Applied Polymer Science 133 (35):35. doi:10.1002/app.43878.
  • Ribeiro, G. L., M. Gandara, D. David Pinzón Moreno, and C. Saron. 2017. Low-density polyethylene/sugarcane fiber composites from recycled polymer and treated fiber by steam explosion. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2017.1379044.
  • Rohit, K., and S. Dixit. 2016. A review - future aspect of natural fiber reinforced composite. Polymers from Renewable Resources 7 (2):43–60. doi:10.1177/204124791600700202.
  • Romanzini, D., A. Lavoratti, H. L. Ornaghi, S. C. Amico, and A. J. Zattera. 2013. Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Materials and Design 47:9–15. doi:10.1016/j.matdes.2012.12.029.
  • Romanzini, D., H. L. Ornaghi, S. C. Amico, and A. J. Zattera. 2012. Influence of fiber hybridization on the dynamic mechanical properties of glass/ramie fiber-reinforced polyester composites. Journal of Reinforced Plastics and Composites 31 (23):1652–61. doi:10.1177/0731684412459982.
  • Rong, M. Z., M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng. 2001. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology 61 (10):1437–47. doi:10.1016/S0266-3538(01)00046-X.
  • Rousakis, T. 2016. Natural fibre rebar cementitious composites. In Advanced high strength natural fibre composites in construction, 205–14. Woodhead Publishing, United Kingdom: Elsevier Inc. doi:10.1016/B978-0-08-100411-1.00009-1.
  • Rout, J., M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty. 2001. The influence of fibre treatment on the performance of coir-polyester composites. Composites Science and Technology, 61, 1303-1310.
  • Saba, N., O. Y. Alothman, Z. Almutairi, M. Jawaid, and W. Ghori. 2019. Date palm reinforced epoxy composites: tensile, impact and morphological properties. Journal of Materials Research and Technology 8 (5):3959–69. doi:10.1016/j.jmrt.2019.07.004.
  • Sadrmanesh, V., and Y. Chen. 2019. Bast fibres: structure, processing, properties, and applications. International Materials Reviews 64 (7):381–406. doi:10.1080/09506608.2018.1501171.
  • Sanjay, M. R., S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan. 2019. A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydrate Polymers 207:108–21. doi:10.1016/j.carbpol.2018.11.083.
  • Sanyang, M. L., S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari. 2016. Recent developments in sugar palm (arenga pinnata) based biocomposites and their potential industrial applications: a review. Renewable and Sustainable Energy Reviews 54: Elsevier Ltd: 533–49. doi:10.1016/j.rser.2015.10.037.
  • Sapuan, S. M., K. F. Tamrin, Y. Nukman, Y. A. El-Shekeil, M. S. A. Hussin, and S. N. A. Aziz. 2017. Natural fiber-reinforced composites: types, development, manufacturing process, and measurement. In Comprehensive materials finishing, M.S.J. Hashmi (Ed.), Vols. 1–3., 203–30. Elsevier Inc. doi:10.1016/B978-0-12-803581-8.09183-9.
  • Sarasini, F., J. Tirillò, D. Puglia, F. Dominici, C. Santulli, K. Boimau, T. Valente, and L. Torre. 2017. Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Composite Structures 167:20–29. doi:10.1016/j.compstruct.2017.01.071.
  • Satapathy, S., and R. V. S. Kothapalli. 2018. Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. Journal of Polymers and the Environment 26 (1):200–13. doi:10.1007/s10924-017-0938-0.
  • Saw, S. K., K. Akhtar, N. Yadav, and A. K. Singh. 2014. Hybrid composites made from jute/coir fibers: water absorption, thickness swelling, density, morphology, and mechanical properties. Journal of Natural Fibers 11 (1):39–53. doi:10.1080/15440478.2013.825067.
  • Sèbe, G., N. S. Cetin, A. S. H. Callum, and M. Hughes. 2000. RTM hemp fibre-reinforced polyester composites. Applied Composite Materials 7 (5–6):341–49. doi:10.1023/A:1026538107200.
  • Sekar, S., S. Suresh Kumar, S. Vigneshwaran, and G. Velmurugan. 2020. Evaluation of mechanical and water absorption behavior of natural fiber-reinforced hybrid biocomposites. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1788487.
  • Sena Neto, A. R., M. A. M. Araujo, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini. 2013. Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Industrial Crops and Products 43 (1):529–37. doi:10.1016/j.indcrop.2012.08.001.
  • Sepe, R., F. Bollino, L. Boccarusso, and F. Caputo. 2018. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites Part B: Engineering 133 (January):210–17. doi:10.1016/j.compositesb.2017.09.030.
  • Sgriccia, N., M. C. Hawley, and M. Misra. 2008. Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing 39 (10):1632–37. doi:10.1016/j.compositesa.2008.07.007.
  • Shah, D. U. 2013. Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. Journal of Materials Science 48 (18):6083–107. Springer. doi:10.1007/s10853-013-7458-7.
  • Shahzad, A. 2012. Hemp fiber and its composites – a review. Journal of Composite Materials 46 (8):973–86. doi:10.1177/0021998311413623.
  • Shanmugam, D., and M. Thiruchitrambalam. 2013. Static and dynamic mechanical properties of alkali treated unidirectional continuous palmyra palm leaf stalk fiber/jute fiber reinforced hybrid polyester composites. Materials and Design 50 (September):533–42. doi:10.1016/j.matdes.2013.03.048.
  • Sherely, A. P., A. Boudenne, L. Ibos, Y. Candau, K. Joseph, and S. Thomas. 2008. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites Part A: Applied Science and Manufacturing 39 (9):1582–88. doi:10.1016/j.compositesa.2008.06.004.
  • Shih, Y. F., W. C. Chang, W. C. Liu, C. C. Lee, C. S. Kuan, and Y. H. Yu. 2014. Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites. Journal of the Taiwan Institute of Chemical Engineers 45 (4):2039–46. doi:10.1016/j.jtice.2014.02.015.
  • Shivamurthy, B., B. H. S. Thimmappa, and J. Monteiro. 2018. Sliding wear, mechanical, flammability, and water intake properties of banana short fiber/al(oh) 3 /epoxy composites. Journal of Natural Fibers 1–9. doi:10.1080/15440478.2018.1492489.
  • Singha, A. S., and R. K. Rana. 2012. Chemically induced graft copolymerization of acrylonitrile onto lignocellulosic fibers. Journal of Applied Polymer Science 124 (3):1891–98. doi:10.1002/app.35221.
  • Singleton, A. C. N., C. A. Baillie, P. W. R. Beaumont, and T. Peijs. 2003. On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Composites Part B: Engineering 34 (6):519–26. doi:10.1016/S1359-8368(03)00042-8.
  • Sood, M., D. Dharmpal, and V. K. Gupta. 2015. “Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite.” In Materials Today: Proceedings, 2:3149–55. Elsevier Ltd. 10.1016/j.matpr.2015.07.103.
  • Sreekala, M. S., M. G. Kumaran, S. Joseph, M. Jacob, and S. Thomas. 2000. Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Applied Composite Materials 7 (5–6):295–329. doi:10.1023/A:1026534006291.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of sansevieria cylindrica fibres - an exploratory investigation. Materials and Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Suizu, N., T. Uno, K. Goda, and J. Ohgi. 2009. Tensile and impact properties of fully green composites reinforced with mercerized ramie fibers. Journal of Materials Science 44 (10):2477–82. doi:10.1007/s10853-009-3317-y.
  • Sundarakannan, R., V. Arumugaprabu, V. Manikandan, and S. Vigneshwaran. 2019. Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix. Materials Research Express 6 (12):125349. doi:10.1088/2053-1591/ab6197.
  • Supian, A. B. M., S. M. Sapuan, M. Y. M. Zuhri, E. S. Zainudin, and H. H. Ya. 2020. Crashworthiness performance of hybrid kenaf/glass fiber reinforced epoxy tube on winding orientation effect under quasi-static compression load. Defence Technology 16 (5):1051–61. doi:10.1016/j.dt.2019.11.012.
  • Suresh, S., D. Sudhakara, and B. Vinod. 2020. Investigation on industrial waste eco-friendly natural fiber-reinforced polymer composites. Journal of Bio- and Tribo-Corrosion 6 (2):40. doi:10.1007/s40735-020-00339-w.
  • Surin, P., P. Rakkwamsuk, and E. Wimolmala. 2014. Effects of coir fiber and maleic anhydride modification on the properties of thermoplastic starch/PLA composite laminates. Journal of Natural Fibers, 12(2), 108-120. doi:10.1080/15440478.2014.901203.
  • Taborda-Ríos, J. A., O. López-Botello, P. Zambrano-Robledo, L. A. Reyes-Osorio, and C. Garza. 2020. Mechanical characterisation of a bamboo fibre/polylactic acid composite produced by fused deposition modelling. Journal of Reinforced Plastics and Composites 39 (23–24):932–44. doi:10.1177/0731684420938434.
  • Todkar, S. S., and S. A. Patil. 2019. Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering 174 (May):106927. doi:10.1016/j.compositesb.2019.106927.
  • Väisänen, T., A. Haapala, R. Lappalainen, and L. Tomppo. 2016. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. In Waste management, 54, 62-73, Elsevier Ltd. doi:10.1016/j.wasman.2016.04.037.
  • Valášek, P., R. D’Amato, M. Müller, and A. Ruggiero. 2018. Mechanical properties and abrasive wear of white/brown coir epoxy composites. Composites Part B: Engineering 146 (April):88–97. doi:10.1016/j.compositesb.2018.04.003.
  • Valášek, P., M. Müller, and Š. Vladimír. 2017. Influence of plasma treatment on mechanical properties of cellulose-based fibres and their interfacial interaction in composite systems. BioResources 12 (3):5449–61. doi:10.15376/biores.12.3.5449-5461.
  • Veerasimman, A., V. Shanmugam, S. Rajendran, D. J. Johnson, A. Subbiah, J. Koilpichai, and U. Marimuthu. 2021. Thermal properties of natural fiber sisal based hybrid composites – a brief review. Journal of Natural Fibers, 1-11. doi:10.1080/15440478.2020.1870619.
  • Venkateshwaran, N., and A. Elayaperumal. 2010. Banana fiber reinforced polymer composites - a review. Journal of Reinforced Plastics and Composites 29 (15):2387–96. doi:10.1177/0731684409360578.
  • Venkateshwaran, N., and A. ElayaPerumal. 2012. Mechanical and water absorption properties of woven jute/banana hybrid composites. Fibers and Polymers 13 (7):907–14. doi:10.1007/s12221-012-0907-0.
  • Venkateshwaran, N., A. ElayaPerumal, A. Alavudeen, and M. Thiruchitrambalam. 2011. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Materials and Design 32 (7):4017–21. doi:10.1016/j.matdes.2011.03.002.
  • Vieira, L., M. Gomes, S. Júlio Cesar dos, P. Túlio Hallak, J. C. Campos Rubio, and F. Scarpa. 2017. Novel fibre metal laminate sandwich composite structure with sisal woven core. Industrial Crops and Products 99:189–95. doi:10.1016/j.indcrop.2017.02.008.
  • Vigneshwaran, S., R. Sundarakannan, K. M. John, R. Deepak Joel Johnson, K. A. Prasath, S. Ajith, V. Arumugaprabu, and M. Uthayakumar. 2020a. Recent advancement in the natural fiber polymer composites: a comprehensive review. Journal of Cleaner Production Elsevier Ltd doi:10.1016/j.jclepro.2020.124109.
  • Vigneshwaran, S., M. Uthayakumar, and V. Arumugaprabu. 2019a. Solid particle erosion study on redmud - an industrial waste reinforced sisal/polyester hybrid composite. Materials Research Express 6 (6):065307. doi:10.1088/2053-1591/ab0a44.
  • Vigneshwaran, S., M. Uthayakumar, and V. Arumugaprabu. 2019b. Development and sustainability of industrial waste-based red mud hybrid composites. Journal of Cleaner Production 230 (September):862–68. doi:10.1016/j.jclepro.2019.05.131.
  • Vigneshwaran, S., M. Uthayakumar, and V. Arumugaprabu. 2020. Potential use of industrial waste-red mud in developing hybrid composites: a waste management approach. Journal of Cleaner Production 276 (December):124278. doi:10.1016/j.jclepro.2020.124278.
  • Vigneshwaran, S., M. Uthayakumar, V. Arumugaprabu, and R. D. J. Johnson. 2018. Influence of filler on erosion behavior of polymer composites: a comprehensive review. Journal of Reinforced Plastics and Composites 37 (15):1011–19. doi:10.1177/0731684418777111.
  • Vigneshwaran, S., K. M. John, R. Deepak Joel Johnson, M. Uthayakumar, V. Arumugaprabu, and S. T. Kumaran. 2020b. Conventional and unconventional machining performance of natural fibre-reinforced polymer composites: a review. Journal of Reinforced Plastics and Composites (September):073168442095810. doi:10.1177/0731684420958103.
  • Vijaya Ramnath, B., V. M. Manickavasagam, C. Elanchezhian, C. Vinodh Krishna, S. Karthik, and K. Saravanan. 2014. Determination of mechanical properties of intra-layer abaca-jute-glass fiber reinforced composite. Materials and Design 60 (August):643–52. doi:10.1016/j.matdes.2014.03.061.
  • Vijaya Ramnath, B., S. Rajesh, C. Elanchezhian, A. Santosh Shankar, S. Pithchai Pandian, S. Vickneshwaran, and R. Sundar Rajan. 2016. Investigation on mechanical behaviour of twisted natural fiber hybrid composite fabricated by vacuum assisted compression molding technique. Fibers and Polymers 17 (1):80–87. doi:10.1007/s12221-016-5276-7.
  • Vilakati, G. D., A. K. Mishra, S. B. Mishra, B. B. Mamba, and J. M. Thwala. 2010. Influence of TiO 2-modification on the mechanical and thermal properties of sugarcane bagasse-EVA composites. Journal of Inorganic and Organometallic Polymers and Materials 20 (4):802–08. doi:10.1007/s10904-010-9398-x.
  • Wang, H., G. Xian, L. Hui, and L. Sui. 2014. Durability study of a ramie-fiber reinforced phenolic composite subjected to water immersion. Fibers and Polymers 15 (5):1029–34. doi:10.1007/s12221-014-1029-7.
  • Wang, W., M. Sain, and P. A. Cooper. 2006. Study of moisture absorption in natural fiber plastic composites. Composites Science and Technology 66 (3–4):379–86. doi:10.1016/j.compscitech.2005.07.027.
  • Wang, Y., Y. Zhou, L. Lin, J. Corker, and M. Fan. 2020. Overview of 3D additive manufacturing (AM) and corresponding AM composites. Composites Part A: Applied Science and Manufacturing 139: Elsevier Ltd: 106114. doi:10.1016/j.compositesa.2020.106114.
  • Wötzel, K., R. Wirth, and M. Flake. 1999. Life cycle studies on hemp fibre reinforced components and ABS for automotive parts. Angewandte Makromolekulare Chemie 272 (4763):121–27. doi:10.1002/(SICI)1522-9505(19991201)272:1<121::AID-APMC121>3.0.CO;2-T.
  • Wu, Y., C. Xia, L. Cai, A. C. Garcia, and S. Q. Shi. 2018. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production 184 (May):92–100. doi:10.1016/j.jclepro.2018.02.257.
  • Xiong, W. 2018. Bagasse composites: a review of material preparation, attributes, and affecting factors. Journal of Thermoplastic Composite Materials 31 (8):1112–46. doi:10.1177/0892705717734596.
  • Yan, L., N. Chouw, and K. Jayaraman. 2014. Flax fibre and its composites - a review. Composites Part B: Engineering 56:296–317. doi:10.1016/j.compositesb.2013.08.014.
  • Yan, L., N. Chouw, and X. Yuan. 2012. Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. Journal of Reinforced Plastics and Composites 31 (6):425–37. doi:10.1177/0731684412439494.
  • Yantaboot, K., and T. Amornsakchai. 2017. Effect of mastication time on the low strain properties of short pineapple leaf fiber reinforced natural rubber composites. Polymer Testing 57:31–37. doi:10.1016/j.polymertesting.2016.11.006.
  • Yu, T., J. Ren, L. Shumao, H. Yuan, and L. Yan. 2010. Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites Part A: Applied Science and Manufacturing 41 (4):499–505. doi:10.1016/j.compositesa.2009.12.006.
  • Zadorecki, P., and A. J. Michell. 1989. Future prospects for wood cellulose as reinforcement in organic polymer composites. Polymer Composites 10 (2):69–77. doi:10.1002/pc.750100202.
  • Zhang, Y., L. Yan, M. Hao, and Y. Tao. 2013. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Composites Science and Technology 88:172–77. doi:10.1016/j.compscitech.2013.08.037.
  • Zhu, J., H. Zhu, J. Njuguna, and H. Abhyankar. 2013. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 6 (11):5171–98. doi:10.3390/ma6115171.
  • Zie, F., W. Wei, S. Debnath, M. Anwar, and A. H. Abdullah. 2020. Enhancing mechanical performance of bagasse fiber-epoxy composite by surface treatment. In Solid state phenomena, edited by Shen-Ming Chen and Sujan Debnath, 305 SSP, 8–17. Trans Tech Publications Ltd. doi:10.4028/scientific.net/SSP.305.8.
  • Zimniewska, M., and M. Wladyka-Przybylak. 2016. Natural fibers for composite applications, 171–204. Singapore: Springer. doi:10.1007/978-981-10-0234-2_5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.