184
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Optimization and Modeling of Sound-Absorption Properties of Natural Fibers for Acoustical Application

ORCID Icon, , ORCID Icon, , & ORCID Icon

References

  • Akhtar, M. N., A. B. Sulong, M. K. Fadzly Radzi, N. F. Ismail, M. R. Raza, N. Muhamad, and M. A. Khan. 2016. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International 26 (6):657–64. doi:10.1016/j.pnsc.2016.12.004.
  • Alavudeen, A., N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, and N. Venkateshwaren. 2015. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design (1980-2015) 66:246–57. doi:10.1016/j.matdes.2014.10.067.
  • Allard, J., and N. Atalla. 2009. Propagation of sound in porous media: Modelling sound absorbing materials 2e. United Kingdom: John Wiley & Sons.
  • Asmatulu, R., W. Khan, and M. B. Yildirim. Acoustical properties of electrospun nanofibers for aircraft interior noise reduction. Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition; 2009. November 13–19, Lake Buena Vista, Florida, USA.
  • Bansod, P. V., and A. R. Mohanty. 2017. Inverse estimation of the Dunn and Davern model coefficients for jute material using the particle swarm optimization method. Textile Research Journal 87 (17):2166–75. doi:10.1177/0040517516665264.
  • Berardi, U., and G. Iannace. 2015. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 94:840–52. doi:10.1016/j.buildenv.2015.05.029.
  • Berardi, U., and G. Iannace. 2017. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Applied Acoustics 115:131–38. doi:10.1016/j.apacoust.2016.08.012.
  • Chen, X., W. Du, and D. Liu. 2008. Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal 40 (3):423–29. doi:10.1016/j.bej.2008.01.012.
  • Choe, H., G. Sung, and J. H. Kim. 2018. Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams. Composites Science and Technology 156 (1):19–27. doi:10.1016/j.compscitech.2017.12.024.
  • Fiore, V., G. Di Bella, and A. Valenza. 2015. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering 68:14–21. doi:10.1016/j.compositesb.2014.08.025.
  • Hamidon, M. H., M. T. H. Sultan, A. H. Ariffin, and A. U. M. Shah. 2019. Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: A review. Journal of Materials Research and Technology 8 (3):3327–37. doi:10.1016/j.jmrt.2019.04.012.
  • Hashim, M. Y., A. M. Amin, O. M. F. Marwah, M. H. Othman, M. R. M. Yunus, and N. C. Huat. 2017. The effect of alkali treatment under various conditions on physical properties of kenaf fiber. Journal of Physics: Conference Series 914:012030.
  • John, M. J., and R. D. Anandjiwala. 2007. Recent developments in chemical modification and characterization of natural fiber‐reinforced composites. Polymer Composites 29 (2):187–207. doi:10.1002/pc.20461.
  • Joseph, P. V., K. Joseph, S. Thomas, C. K. S. Pillai, V. S. Prasad, G. Groeninckx, and M. Sarkissova. 2003. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composites. Part A, Applied Science and Manufacturing 34 (3):253–66. doi:10.1016/S1359-835X(02)00185-9.
  • Koizumi, T., N. Tsujiuchi, and A. Adachi. 2002. The development of sound absorbing materials using natural bamboo fibers. WIT Transactions on the Built Environment 59. doi:10.2495/HPS020161.
  • Krishna, K. V., and K. Kanny. 2016. The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Composites Part B: Engineering 104:111–17. doi:10.1016/j.compositesb.2016.08.010.
  • Leman, Z., E. S. Zainudin, and M. R. Ishak. 2018. Effectiveness of alkali and sodium bicarbonate treatments on sugar palm fiber: Mechanical, thermal, and chemical investigations. Journal of Natural Fibers 17 (6):877–89. doi:10.1080/15440478.2018.1537872.
  • Lim, Z. Y., A. Putra, M. J. M. Nor, and M. Y. Yaakob. 2018. Sound absorption performance of natural kenaf fibres. Applied Acoustics 130:107–14. doi:10.1016/j.apacoust.2017.09.012.
  • Mahjoub, R., J. M. Yatim, A. R. M. Sam, and S. H. Hashemi. 2014. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials 55:103–13. doi:10.1016/j.conbuildmat.2014.01.036.
  • Mamtaz, H., M. H. Fouladi, M. Al-Atabi, and S. N. Namasivayam. 2016. Acoustic absorption of natural fiber composites. Journal of Engineering 2016:1–11. doi:10.1155/2016/5836107.
  • Martellotta, F., A. Cannavale, V. De Matteis, and U. Ayr. 2018. Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics 141:71–78. doi:10.1016/j.apacoust.2018.06.022.
  • Massoudinejad, M., N. Amanidaz, R. M. Santos, and R. Bakhshoodeh. 2019. Use of municipal, agricultural, industrial, construction and demolition waste in thermal and sound building insulation materials: A review article. Journal of Environmental Health Science 1–16. doi:10.1007/s40201-019-00380-z.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2012. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 8 (5):313–43. doi:10.1163/156855401753255422.
  • Othmani, C., M. Taktak, A. Zein, T. Hentati, T. Elnady, T. Fakhfakh, and M. Haddar. 2016. Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material. Applied Acoustics 109:90–96. doi:10.1016/j.apacoust.2016.02.005.
  • Oushabi, A., S. Sair, F. Oudrhiri Hassani, Y. Abboud, O. Tanane, and A. El Bouari. 2017. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering 23:116–23. doi:10.1016/j.sajce.2017.04.005.
  • Peças, P., H. Carvalho, H. Salman, and M. Leite. 2018. Natural fibre composites and their applications: A review. Journal of Composites Science 2 (4):66. doi:10.3390/jcs2040066.
  • Pickering, K. L., M. G. Aruan Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites. Part A, Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Quinaya, D. C. P., and J. R. M. d’Almeida. 2018. Effect of surface treatments on the cross-section area and on the tensile properties of sisal fibers. Journal of Natural Fibers 16 (6):817–24. doi:10.1080/15440478.2018.1439427.
  • Rai, A., B. Mohanty, and R. Bhargava. 2016. Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chemistry 192:647–59. doi:10.1016/j.foodchem.2015.07.070.
  • Samaei, S. E., H. A. Mahabadi, S. M. Mousavi, A. Khavanin, and M. Faridan. 2020a. Effect of Alkali treatment on diameter and tensile properties of Yucca Gloriosa fiber using response surface methodology. Journal of Natural Fibers 1–14. doi:10.1080/15440478.2020.1818348.
  • Samaei, S. E., H. A. Mahabadi, S. M. Mousavi, A. Khavanin, M. Faridan, and E. Taban. 2020b. The influence of alkaline treatment on acoustical, morphological, tensile and thermal properties of Kenaf natural fibers. Journal of Industrial Textiles 152808372094424. doi:10.1177/1528083720944240.
  • Sodeifian, G., N. S. Ardestani, S. A. Sajadian, and S. Ghorbandoost. 2016. Application of supercritical carbon dioxide to extract essential oil from Cleome coluteoides Boiss: Experimental, response surface and grey wolf optimization methodology. The Journal of Supercritical Fluids 114:55–63. doi:10.1016/j.supflu.2016.04.006.
  • Soltani, P., E. Taban, M. Faridan, S. E. Samaei, and S. Amininasab. 2020. Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber. Applied Acoustics 157:106999. doi:10.1016/j.apacoust.2019.106999.
  • Taban, E., F. Valipour, D. Abdi, and S. Amininasab. 2020a. Mathematical and experimental investigation of sound absorption behavior of sustainable kenaf fiber at low frequency. International Journal of Environmental Science and Technology 17 (12):67–77. doi:10.1007/s13762-020-03024-0.
  • Taban, E., A. Khavanin, A. J. Jafari, M. Faridan, and A. K. Tabrizi. 2019a. Experimental and mathematical survey of sound absorption performance of date palm fibers. Heliyon 5 (6):e01977. doi:10.1016/j.heliyon.2019.e01977.
  • Taban, E., A. Khavanin, A. Ohadi, A. Putra, A. J. Jafari, M. Faridan, and A. Soleimanian. 2019b. Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Building and Environment 161:106274. doi:10.1016/j.buildenv.2019.106274.
  • Taban, E., P. Soltani, U. Berardi, A. Putra, S. M. Mousavi, M. Faridan, S. E. Samaei, and A. Khavanin. 2020b. Measurement, modeling, and optimization of sound absorption performance of Kenaf fibers for building applications. Building and Environment 180:107087. doi:10.1016/j.buildenv.2020.107087.
  • Zhu, T., S. Chen, W. Zhu, and Y. Wang. 2018. Optimization of sound absorption property for polyurethane foam using adaptive simulated annealing algorithm. Journal of Applied Polymer Science 135 (26):46426. doi:10.1002/app.46426.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.