157
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Antimicrobial Activity of Atmospheric Pressure Plasma Treated and Aged Cotton Fibers

, , , , & ORCID Icon

References

  • Andreozzi, L., V. Castelvetro, G. Ciardelli, L. Corsi, M. Faetti, E. Fatarella, and F. Zulli. 2005. Free radical generation upon plasma treatment of cotton fibers and their initiation efficiency in surface-graft polymerization. Journal of Colloid and Interface Science 289 (2):455–65. doi:10.1016/j.jcis.2005.03.058.
  • Ashraf, S., S. Sher, F. Rehman, Z. M. Khalid, M. Mehmood, and I. Hussain. 2014. Synthesis of cellulose-metal nanoparticle composites: Development and comparison of different protocols. Cellulose 21 (1):395–405. doi:10.1007/s10570-013-0129-7.
  • Bohrn, R., A. Potthast, S. Schiehser, T. Rosenau, H. Sixta, and P. Kosma. 2006. The FDAM method: Determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 7 (6):1743–50. doi:10.1021/bm060039h.
  • Calvimontes, A., P. Mauersberger, M. Nitschke, V. Dutschk, and F. Simon. 2011. Effects of oxygen plasma on cellulose surface. Cellulose 18 (3):803–09. doi:10.1007/s10570-011-9511-5.
  • Dastjerdi, R., and M. Montazer. 2010. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces. B, Biointerfaces 79:5–18.
  • Espitia, P. J. P., N. F. F. Soares, J. S. R. Coimbra, N. J. Andrade, R. S. Cruz, and E. A. A. Medeiros. 2012. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology 5 (5):1447–64. doi:10.1007/s11947-012-0797-6.
  • Fan, Z., L. Di, X. Zhang, and H. Wang. 2019. A Surface Dielectric Barrier Discharge Plasma for Preparing Cotton-Fabric-Supported Silver Nanoparticles. Nanomaterials 9 (7):961. doi:10.3390/nano9070961.
  • Gargoubi, S., R. Tolouei, P. Chevallier, L. Levesque, N. Ladhari, C. Boudokhane, and D. Mantovani. 2016. Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study. Carbohydrate Polymers 147:28–36. doi:10.1016/j.carbpol.2016.03.084.
  • Ghimire, B., D. P. Subedi, and R. Khanal. 2017. Improvement of wettability and absorbancy of textile using atmospheric pressure dielectric barrier discharge. AIP Advances 7 (8):085213. doi:10.1063/1.4993084.
  • Henniges, U., S. Okubayashi, T. Rosenau, and A. Potthast. 2012. Irradiation of Cellulosic Pulps: Understanding Its Impact on Cellulose Oxidation. Biomacromolecules 13:4171−78.
  • Ibrahim, N. A., M. M. Hashem, M. A. Eid, R. Refai, M. El-Hossamy, and B. M. Eid. 2010. Eco-friendly plasma treatment of linen-containing fabrics. The Journal of the Textile Institute 101 (12):1035–49. doi:10.1080/00405000903205467.
  • Ifuku, S., M. Tsuji, M. Morimoto, H. Saimoto, and H. Yano. 2009. Synthesis of Silver Nanoparticles Templated by TEMPO-Mediated Oxidized Bacterial Cellulose Nanofibers. Biomacromolecules 10 (9):2714–17. doi:10.1021/bm9006979.
  • Jafari, R., S. Asadollahi, and M. Farzaneh. 2013. Applications of Plasma Technology in Development of Superhydrophobic Surfaces. Plasma Chemistry and Plasma Processing 33 (1):177–200. doi:10.1007/s11090-012-9413-9.
  • Kan, C.-W., and Y.-L. Lam. 2013. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment. Materials 6 (1):314–33. doi:10.3390/ma6010314.
  • Karahan, H. A., E. Ozdogan, A. Demir, H. Ayhan, and N. Seventekin. 2009. Effects of Atmospheric Pressure Plasma Treatments on Certain Properties of Cotton Fabrics. Fibres& Textiles in Eastern Europe 17:19–22.
  • Kogelschatz, U. 2003. Dielectric-barrier Discharges: Their History, Discharge Physics and Industrial Applications. Plasma Chemistry and Plasma Processing 23 (1):1–46. doi:10.1023/A:1022470901385.
  • Kolarova, K., V. Vosmanska, S. Rimpelova, and V. Švorčik. 2013. Effect of plasma treatment on cellulose fibers. Cellulose 20 (2):953–61. doi:10.1007/s10570-013-9863-0.
  • Kramar, A., B. Obradović, A. Vesel, M. Kuraica, and M. Kostić. 2015. Preparation of Hydrophobic Viscose Fabric Using Nitrogen DBD and Copper Ions Sorption. Plasma Processes and Polymers 12 (10):1095–103. doi:10.1002/ppap.201400228.
  • Kramar, A., V. Prysiazhnyi, B. Dojčinović, K. Mihajlovski, B. M. Obradović, M. M. Kuraica, and M. Kostić. 2013. Antimicrobial viscose fabric prepared by treatment in DBD and subsequent deposition of silver and copper ions - investigation of plasma aging effect. Surface & Coatings Technology 234:92–99. doi:10.1016/j.surfcoat.2013.03.030.
  • Kramar, A. D., B. M. Obradović, A. Vesel, M. M. Kuraica, and M. M. Kostić. 2018. Surface cleaning of raw cotton fibers with atmospheric pressure air plasma. Cellulose 25 (7):4199–209. doi:10.1007/s10570-018-1820-5.
  • Li, Z., J. Meng, W. Wang, Z. Wang, M. Li, T. Chen, and C. J. Liu. 2017. The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity. Carbohydrate Polymers 161:270–76. doi:10.1016/j.carbpol.2017.01.020.
  • Malis, D., B. Jeršek, B. Tomšič, D. Štular, B. Golja, G. Kapun, and B. Simončič. 2019. Antibacterial Activity and Biodegradation of Cellulose Fiber Blends with Incorporated ZnO. Materials 12 (20):3399. doi:10.3390/ma12203399.
  • Mather, R. R. 2009. Surface modification of textiles by plasma treatments. In Woodhead Publishing Series in Textiles: Surface modification of textiles, ed. Q. Wei, 296-317. Cambridge: Woodhead Publishing Limited.
  • Mihailović, D., Z. Šaponjić, M. Radoičić, S. Lazovic, C. J. Baily, P. Jovancic, J. Nedeljkovic, and M. Radetic. 2011. Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles. Cellulose 18 (3):811–25. doi:10.1007/s10570-011-9510-6.
  • Morais, D. S., R. M. Guedes, and M. A. Lopes. 2016. Antimicrobial Approaches for Textiles: From Research to Market. Materials 9 (6):498. doi:10.3390/ma9060498.
  • Nikolić, T., M. Kostić, J. Praskalo, Ž. Petronijević, and P. Škundrić. 2011. Sorption properties of periodate oxidized cotton. Chemical Industry and Chemical Engineering Quarterly 17 (3):367–73. doi:10.2298/CICEQ110521023N.
  • Noorian, S. A., N. Hemmatinejad, and J. A. R. Navarro. 2020. Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. International Journal of Biological Macromolecules 154:1215–26. doi:10.1016/j.ijbiomac.2019.10.276.
  • Nourbakhsh, S. 2018. Antimicrobial Performance of Plasma Corona Modified Cotton Treated with Silver Nitrate. Russian Journal of Applied Chemistry 91:1338−44.
  • Peran, J., and S. Ercegović Ražić. 2020. Application of atmospheric pressure plasma technology for textile surface modification. Textile Research Journal 90 (9–10):1174–97. doi:10.1177/0040517519883954.
  • Primc, G., B. Tomšič, A. Vesel, M. Mozetič, S. Ercegović Ražić, and M. Gorjanc. 2016. Biodegradability of oxygen-plasma treated cellulose textile functionalized with ZnO nanoparticles as antibacterial treatment. Journal of Physics D: Applied Physics 49 (32):324002. doi:10.1088/0022-3727/49/32/324002.
  • Prysiazhnyi, V., A. Kramar, B. Dojčinovic, A. Žekić, B. Obradović, M. Kuraica, and M. Kostić. 2013. Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment. Cellulose 20 (1):315–25. doi:10.1007/s10570-012-9817-y.
  • Radetić, M. 2013. Functionalization of textile materials with silver nanoparticles. Journal of Material Science 48 (1):95–107. doi:10.1007/s10853-012-6677-7.
  • Radetić, M., and D. Marković. 2019. Nano-finishing of cellulose textile materials with copper and copper oxide nanoparticles. Cellulose 26 (17):8971–91. doi:10.1007/s10570-019-02714-4.
  • Röhrling, J., A. Potthast, T. Rosenau, T. Lange, A. Borgards, H. Sixta, and P. Kosma. 2002b. A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and application. Biomacromolecules 3 (5):969–75. doi:10.1021/bm020030p.
  • Röhrling, J., A. Potthast, T. Rosenau, T. Lange, G. Ebner, H. Sixta, and P. Kosma. 2002a. A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3 (5):959–68. doi:10.1021/bm020029q.
  • Saito, T., and A. Isogai. 2005. Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydrate Polymers 61 (2):183–90. doi:10.1016/j.carbpol.2005.04.009.
  • Shahidi, S. 2014. Novel method for ultraviolet protection and flame retardancy of cotton fabrics by low-temperature plasma. Cellulose 21 (1):757–68. doi:10.1007/s10570-013-0127-9.
  • Shishoo, R., ed. 2007. Plasma Technologies for Textiles. Cambridge: Woodhead Publishing Limited.
  • Shrivastava, S., T. Bera, A. Roy, G. Singh, P. Ramachandrarao, and D. Dash. 2007. Characterization of enhancedantibacterial effects of novel silver nanoparticles. Nanotechnology 18 (22):225103. doi:10.1088/0957-4484/18/22/225103.
  • Silbermann, S., C. Weilach, G. Kliba, K. Fackler, and A. Potthast. 2017. Improving molar mass analysis of cellulose samples with limited solubility. Carbohydrate Polymers 178:302–10. doi:10.1016/j.carbpol.2017.09.031.
  • Siller, M., H. Amer, M. Bacher, W. Roggenstein, T. Rosenau, and A. Potthast. 2015. Effects of periodate oxidation on cellulose polymorphs. Cellulose 22 (4):2245–61. doi:10.1007/s10570-015-0648-5.
  • Song, J., N. L. Birbach, and J. P. Hinestroza. 2012. Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19 (2):411–24. doi:10.1007/s10570-011-9647-3.
  • Song, X., U. Cvelbar, P. Strazar, L. Vossebein, and A. Zille. 2019. Chemical, Thermo-Mechanical and Antimicrobial Properties of DBD Plasma Treated Disinfectant-Impregnated Wipes during Storage. Polymers 11 (11):1769. doi:10.3390/polym11111769.
  • Stefanović, B., T. Rosenau, and A. Potthast. 2013. Effect of sonochemical treatments on the integrity and oxidation state of cellulose. Carbohydrate Polymers 92 (1):921–27. doi:10.1016/j.carbpol.2012.09.039.
  • Sun, D. (2016). “Surface modification of natural fibres using plasma treatment”. In Biodegradable Green Composites, edited by Susheel Kalia, 18–39. John Wiley & Sons
  • Sun, D. 2016. Surface modification of natural fibres using plasma treatment. In Biodegradable Green Composites, ed. S. Kalia, 18-39. J. Wiley. Sons.
  • Sun, D., and G. K. Stylios. 2004. Effect of Low Temperature Plasma Treatment on the Scouring and Dyeing of Natural Fabrics. Textile Research Journal 74 (9):751–56. doi:10.1177/004051750407400901.
  • Sun, G., ed. 2016. Antimicrobial textiles. In A volume in Woodhead Publishing Series in Textiles. Cambridge: Woodhead Publishing Limited.
  • Trimukhe, A. M., K. N. Pandiyaraj, A. Tripathi, J. S. Melo, and R. R. Deshmukh. 2017. Plasma Surface Modification of Biomaterials for Biomedical Applications. In Advances in Biomaterials for Biomedical Applications, ed. A. Tripathi, J. Melo, and A. S. Materials, Vol. 66, 95-166. Singapore: Springer.
  • Tsoi, W.-Y. I., C.-W. Kan, and C.-W. M. Yuan. 2011. Using ageing effect for hydrophobic modification of cotton fabric with atmospheric pressure plasma. Bioresources 6 (3):3424–39.
  • Vesel, A., M. Mozetic, S. Strand, Z. Persin, K. Stana-Kleinschek, and N. Hauptman. 2010. Plasma modification of viscose textile. Vacuum 84 (1):79–82. doi:10.1016/j.vacuum.2009.04.028.
  • Wakelyn, P. J., N. R. Bertoniere, A. D. French, D. P. Thibodeaux, B. A. Triplett, M. A. Rousselle, W. R. Goynes, J. V. Edwards, L. Hunter, D. D. McAlister, et al. 2007. Cotton fibers. In Handbook of fiber chemistry, ed. M. Lewin, 521–667. 3rd ed ed. London: Taylor & Francis Group.
  • Windler, L., M. Height, and B. Nowack. 2013. Comparative evaluation of antimicrobials for textile applications. Environment International 53:62‐73.
  • Wu, M., S. Kuga, and Y. Huang. 2008. Quasi-One-Dimensional Arrangement of Silver Nanoparticles Templated by Cellulose Microfibrils. Langmuir 24 (18):10494–97. doi:10.1021/la801602k.
  • Zhou, C. E., C.-W. Kan, C.-W. Marcus Yuen, J. P. Matinlinn, J. K.-H. Tsoi, and Q. Zhang. 2016b. Plasma treatment applied in the pad-dry-cure process for making rechargeable antimicrobial cotton fabric that inhibits S. Aureus. Textile Research Journal 86 (20):2202–15. doi:10.1177/0040517515622147.
  • Zhou, C. E., K. C. Wan, C. M. Yuen, K. C. Lo, C. P. Ho, and K. R. Lau. 2016a. Regenerable antimicrobial finishing of cotton with nitrogen plasma treatment. BioResources 11:1554–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.