256
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Extraction, Purification and Characterization of Nanocrystalline Cellulose from Eichhornia crassipes (Mart.) Solms: A Common Aquatic Weed Water Hyacinth

, , , &

References

  • Abral, H., J. Ariksa, M. Mahardika, D. Handayani, I. Aminah, N. Sandrawati, A. B. Pratama, N. Fajri, S. M. Sapuan, R. A. Ilyas, et al. 2020. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocolloids 98:105266–105266. doi:10.1016/j.foodhyd.2019.105266.
  • Asrofi, M., H. Abral, A. Kasim, and A. Pratoto. 2017. XRD and FTIR studies of nanocrystalline cellulose from water hyacinth (Eichorniacrassipes) fiber. Journal of Metastable and Nanocrystalline Materials 29:9–16. www.scientific.net/JMNM.29.9
  • Asrofi, M., H. Abral, A. Kasim, A. Pratoto, M. Mahardika, and F. Hafizulhaq. 2018a. Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite:effect of ultrasonic vibration during processing.
  • Asrofi, M., H. Abral, A. Kasim, A. Pratoto, M. Mahardika, J.-W. Park, H.-J. Kim et al. 2018b. Isolation of nanocellulose from water hyacinth fiber (WHF) produced via digester-sonication and its characterisation. Fibers and Polymers. 19(8):1618–25. doi:10.1007/s12221-018-7953-1.
  • Asrofi, M., H. Abral, Y. K. Putra, S. M. Sapuan, and H.-J. Kim. 2018. Effect of duration of sonication during gelatinization on properties of tapioca starch water hyacinth fiber biocomposite. International Journal of Biological Macromolecules 108:167–76. doi:10.1016/j.ijbiomac.2017.11.165.
  • Bindu Sekhar Purkait, Dipa Ray, Suparna Sengupta, Tanusree Kar, Amar Mohanty, and Manju Misra Industrial & Engineering Chemistry Research.2011 50 (2):871–876. doi:10.1021/ie101797d.
  • Cichosz, S., A. Masek, K. WolskiK, and M. Zaborski. 2019. Universal approach of cellulose fibres chemical modification result analysis via commonly used techniques. Polymer Bulletin 76 (5):2147–62. doi:10.1007/s00289-018-2487-7.
  • Deepa, B., E. Abraham, C. B M, A. Bismarck, J. J B, A. PothanL, L. A L, F. De SouzaS, and M. Kottaisamy. 2011. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology 102 (102):1988–97. doi:10.1016/j.biortech.2010.09.030.
  • Deepa, B., E. Abraham, N. Cordeiro, M. Mozetic, M. A P, K. Oksman, M. Faria, S. Thomas, and L. A. Pothan. 2015. Utilization of various lignocellulosic biomass for the production of nanocellulose: A comparative study. Cellulose 22 (2):1075–90. doi:10.1007/s10570-015-0554-x.
  • Devi, R. R., P. Dhar, A. Kalamdhad, and V. Katiyar. 2015. Fabrication of cellulose nanocrystals from agricultural compost. Compost Science & Utilization 23 (2):104–16. doi:10.1080/1065657X.2014.972595.
  • Dufresne, A. 2013. Nanocellulose: A new agelessbionanomaterial. Materials Today 16 (6):220–27. doi:10.1016/j.mattod.2013.06.004.
  • Dwivedi, M., and A. K. Dwivedi. 2018. Valuable product from water hyacinth -review paper. Inter- National Research Journal of Engineering and Technology (IRJET) 5 (3):838–43.
  • Goel, G., and A. S. Kalamdhad. 2018. A practical proposal for utilisation of water hyacinth: Recycling in fired bricks. Journal of Cleaner Production 190:261–71. doi:10.1016/j.jclepro.2018.04.179.
  • Istirokhatun, T., N. Rokhati, R. Rachmawaty, M. Meriyani, S. Priyanto, and H. Susanto. 2015. Cellulose isolation from tropical water hyacinth for membrane preparation. Procedia Environmental Sciences 23:274–81. doi:10.1016/j.proenv.2015.01.041.
  • Jafary, R., M. K. Mehrizi, S. Hekmatimoghaddam, and A. Jebali. 2015. Antibacterial property of cellulose fabric finished by allicin-conjugated nanocellulose. The Journal of the Textile Institute 106 (7):683–89. doi:10.1080/00405000.2014.954780.
  • Juárez-Luna, G. N., E. Favela-Torres, I. R. Quevedo, and N. Batina. 2019. Enzymatically assisted isolation of high-quality cellulose nanoparticles from water hyacinth stems. Carbohydrate Polymers 220:110–17. doi:10.1016/j.carbpol.2019.05.058.
  • Latif, M. H. A., and Y. F. Mahmood. 2018. Isolation and characterisation of microcrystalline cellulose and preparation of nano-crystalline cellulose from tropical water hyacinth. Ibn AL- Haitham Journal ForPure and Applied Science 31 (1):180–180. doi:10.30526/31.1.1865.
  • Lee, H. V., S. B. A. Hamid, and S. K. Zain.2014. Review article conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process.
  • Mahardika, M., H. Abral, A. Kasim, S. Arief, and M. Asrofi.2018. Production of nanocellulose from pineapple leaf fibers via high-shear homogenisation and ultrasonication.
  • Morán, J. I., V. A. Alvarez, V. P. CyrasVP, and A. Vázquez. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15 (1):149–59. doi:10.1007/s10570-007-9145-9.
  • Nguyen, B. T., L. H. V. Thi, et al. 2017. Comparison of some pre-treatment methods on cellulose recovery from water hyacinth. Eichhornia Crassipes 5:274–79.
  • Pakutsah, K. Aht-Ong D. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties. Int J Biol Macromol. (2020) Feb 15;145:64-76. doi:10.1016/j.ijbiomac.2019.12.172. Epub 2019 Dec 24. PMID: 31874270.
  • P E, O., X. Petit-Breuilh, D. P E, and W. Gacitúa. 2020. Manufacture of a bio-tissue based on nanocrystalline cellulose fromchilean bamboo Chusqueaquila and a polymer matrix usingelectrospinning. Nano-Structures & Nano-Objects 23:100525. doi:10.1016/j.nanoso.2020.100525.
  • Prado, K. S., and M. A. S. Spinacé. 2019. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International Journal of Biological Macromolecules 122:410–16. doi:10.1016/j.ijbiomac.2018.10.187.
  • Sun, D., J. Amaka, O. God, and C. M. Perrin. 2020. Popescu.A process for deriving high quality cellulose nanofibrils from Water hyacinth invasive species.
  • Sundari, M. T., and A. Ramesh. 2012. Isolation and characterisation of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydrate Polymers 87 (2):1701–05. doi:10.1016/j.carbpol.2011.09.076.
  • Syafri, E., S. M. Sudirman, E. D. Yulianti, M. Asrofi, H. Abral, S. M. Sapuan, R. A. Ilyas, A. Fudholi et al. 2019. Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. Journal of Materials Research and Technology. 120(6):578-586. doi:10.1016/j.jmrt.2019.10.016.
  • Tan, S. J., and A. G. Supri. 2016. Properties of low-density polyethylene/natural rubber/water hyacinth fiber composites: The effect of alkaline treatment. Polymer Bulletin 73 (2):539–57. doi:10.1007/s00289-015-1508-z.
  • Williams, A.E. (2006). Water Hyacinth. In Van Nostrand's Scientific Encyclopedia, G.D. Considine (Ed.). https://doi.org/10.1002/0471743984.vse7463.pub2
  • Xu, C., S. Zhu, C. Xing, D. Li, N. Zhu, Z. H. Isolation, and F. Zhao. 2015. Properties of cellulose nanofibrils from coconut palm petioles by different mechanical process. PLOS ONE 10 (4):e0122123–e0122123. doi:10.1371/journal.pone.0122123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.