122
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of Sequential Acid-alkali Treatment on Palm Biomass Waste Properties

, &

References

  • Abdelwahab, O., S. M. Nasr., and W. M. Thabet. 2017. Palm fibers and modified palm fibers adsorbents for different oils. Alexandria Engineering Journal 56 (4):749–55. doi:10.1016/j.aej.2016.11.020.
  • Ajao, O., J. Jeaidi., M. Benali, A. M. Restrepo, N. El Mehdi, and Y. Boumghar. 2018. Quantification and variability analysis of lignin optical properties for colour-dependent industrial applications. Molecules 23 (2):2. doi:10.3390/molecules23020377.
  • Alekhina, M., O. Ershova., A. Ebert, S. Heikkinen, and H. Sixta. 2015. Softwood kraft lignin for value-added applications: Fractionation and structural Characterization. Industrial Crops and Products 66 (220):220–28. doi:10.1016/j.indcrop.2014.12.021.
  • Alharbi, M. A. H., S. Hirai, H. A. Tuan., S. Akioka, and S. Wataru. 2020. Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated phoenix dactylifera and cocos nucifera. Polymer Testing 84:106384. doi:10.1016/j.polymertesting.2020.106384.
  • Anwar, Z., M. Gulfraz., and M. Irshad. 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences 7 (2):163–73. doi:10.1016/j.jrras.2014.02.003.
  • Asim, M., M. T. Paridah, M. Chandrasekar, R. M. Shahroze, M. Jawaid, M. Nasir, and R. Siakeng. 2020. Thermal Stability of Natural Fibers and Their Polymer Composites. Iranian Polymer Journal 29 (7):625–48. doi:10.1007/s13726-020-00824-6.
  • Astruc, J., M. Nagalakshmaiah., G. Laroche, M. Grandbois, S. Elkoun, and M. Robert. 2017. Isolation of cellulose-II nanospheres from flax stems and their physical and morphological properties. Carbohydrate Polymers 178:352–59. doi:10.1016/j.carbpol.2017.08.138.
  • Banu, J. R., S. Kavitha., R. Y. Kannah, T. P. Devi, M. Gunasekaran, S. H. Kim, and G. Kumar. 2019. A review on biopolymer production via lignin valorization. Bioresource Technology 290:121790. doi:10.1016/j.biortech.2019.121790.
  • Bhat, R., H. P. S. A. Khalil, and A. A. Karim. 2009. Exploring the antioxidant potential of lignin isolated from black liquor of oil palm waste. Comptes Rendus Biologies 332 (9):827–31. doi:10.1016/j.crvi.2009.05.004.
  • Borah, J. S., and D. S. Kim. 2016. Recent development in thermoplastic/wood composites and nanocomposites: A review. Korean Journal of Chemical Engineering 33 (11):3035–49. doi:10.1007/s11814-016-0183-6.
  • Cavali, M., C. R. Soccol., D. Tavares, L. A. Z. Torres, V. O. D. A. Tanobe, A. Z. Filho, and A. L. Woiciechowski. 2020. Effect of sequential acid-alkaline treatment on physical and chemical characteristics of lignin and cellulose from pine (pinus spp.) residual sawdust. Bioresource Technology 316:123884. doi:10.1016/j.biortech.2020.123884.
  • Chattopadhyay, S. N., N. C. Pan., A. N. Roy, K. K. Samanta, and A. Khan. 2020. Two-step bleaching of jute yarn and fabric using hydrogen peroxide and peracetic acid. Journal of Natural Fibers 1–9. doi:10.1080/15440478.2020.1821278.
  • Chen, T., Y. Li., L. Lei, M. Hong, Q. Sun, and Y. Hou. 2016. Influence of residual black liquor in pulp on wastewater pollution after bleaching process. Bioresources 12 (1):2031–39. doi:10.15376/biores.12.1.2031-2039.
  • Das, P., R. B. Stoffel., M. C. Area, and A. J. Ragauskas. 2019. Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass & Bioenergy 120:350–58. doi:10.1016/j.biombioe.2018.11.029.
  • Das, P. K., B. P. Das, and P. Dash. 2020. Potentials of postharvest rice crop residues as a source of biofuel. Refining Biomass Residues for Sustainable Energy and Bioproducts 2014:275–301. doi:10.1016/b978-0-12-818996-2.00013-2.
  • De Sousa, T. A., A. F. Habibe., and D. R. Mulinari. 2012. Characterization of Palm Fibers and FOUNDRY RESIDUE for Briquettes Production. Cadernos UniFOA 1: 61–67.
  • Doczekalska, B., M. Bartkowiak., and R. Zakrzewski. 2014. Esterification of willow wood with cyclic acid anhydrides. Wood Research 59 (1):85–96.
  • Dransfield, J., N. W. Uhl, C. B. Asmussen, W. J. Baker, M. M. Harley, and C. E. Lewis. 2005. A new phylogenetic classification of the palm family, arecaceae. Kew Bulletin 60 (4):559–69. doi:10.2307/25070242.
  • Fernanda de Carvalho, O. 2015. “Oxidação de lignina proveniente de resíduos lignocelulósicos agroindustriais para obtenção de compostos químicos aromáticos de maior valor agregado, PhD. diss, Escola de Engenharia de Lorena da Universidade de São Paulo.
  • Fernández-Rodríguez, J., X. Erdocia, F. Hernández-Ramos, O. Gordobil, M. G. Alriols, and J. Labidi. 2020. Direct lignin depolymerization process from sulfur-free black liquors. Fuel Processing Technology 197:106201. doi:10.1016/j.fuproc.2019.106201.
  • Galiwango, E., N. S. A. Rahman., A. H. Al-Marzouqi, M. M. Abu-Omar, and A. A. Khaleel. 2019. Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon 5 (12):e02937. doi:10.1016/j.heliyon.2019.e02937.
  • Gan, T., Y. Zhang, Y. Chen, H. Hu, M. Yang, Z. Huang, D. Chen, and A. Huang. 2018. Reactivity of main components and substituent distribution in esterified sugarcane bagasse prepared by effective solid phase reaction. Carbohydrate Polymers 181:633–41. doi:10.1016/j.carbpol.2017.11.102.
  • Goudarzi, A., L. T. Lin., and F. K. Ko. 2014. X-Ray diffraction analysis of kraft lignins and lignin-derived carbon nanofibers. Journal of Nanotechnology in Engineering and Medicine 5 (2):1–5. doi:10.1115/1.4028300.
  • Hatakeyama, H., and T. Hatakeyama. 2009. Lignin structure, properties, and applications. Advances in Polymer Science. doi:10.1007/12.
  • Hemansi, R. G., V. K. Aswal, and J. K, Saini 2020. Sequential dilute acid and alkali deconstruction of sugarcane bagasse for improved hydrolysis: Insight from small angle neutron scattering (SANS). Renewable Energy. 147: 2091–2101. https://doi.org/10.1016/j.renene.2019.10.003
  • Inkrod, C., M. Raita, V. Champreda, and N. Laosiripojana. 2018. Characteristics of lignin extracted from different lignocellulosic materials via organosolv fractionation.Bioenergy Research 11 (3): 277–90. 10.1007/s12155-018-9895-2
  • Joshi, S. V., L. T. Drzal, A. K. Mohanty, and S. Arora. 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites. Part A, Applied Science and Manufacturing 35 (3):371–76. doi:10.1016/j.compositesa.2003.09.016.
  • Kim, G.-H., and B.-H. Um. 2020. Fractionation and characterization of lignins from miscanthus via organosolv and soda pulping for biorefinery applications. International Journal of Biological Macromolecules 158:443–51. doi:10.1016/j.ijbiomac.2020.04.229.
  • Kim, S., and J. M. Park, J. Seo, and C. H. Kim. 2020. Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresources Technology 109: 229–233. https://doi.org/10.1016/j.biortech.2012.01.036.
  • Kim, S., and C. H. Kim. 2013. Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber. Renewable Energy 54:150–55. doi:10.1016/j.renene.2012.08.032.
  • Klock En, U., A. S. D. Andrade, and J. A. Hernandez. 2013. Quimica da madeira. Universidade Federal Do Paraná Setor De Ciências Agrárias, 86. Disponible in http://marioloureiro.net/ciencia/biomass/quimicadamadeira.pdf
  • Ko, S. W., J. P. E. Soriano., A. R. Unnithan, J. Y. Lee, C. H. Park, and C. S. Kim. 2018. Development of bioactive cellulose nanocrystals derived from dominant cellulose polymorphs i and ii from capsosiphon fulvescens for biomedical applications. International Journal of Biological Macromolecules 110:531–39. doi:10.1016/j.ijbiomac.2017.11.047.
  • Kohl, A. 1986. Black liquor gasification. The Canadian Journal of Chemical Engineering 64 (2):299–304. doi:10.1002/cjce.5450640221.
  • Laurichesse, S., and L. Avérous. 2014. Chemical modification of lignins: towards biobased polymers. Progress in Polymer Science 39 (7):1266–90. doi:10.1016/j.progpolymsci.2013.11.004.
  • Li, J. 2011. Isolation of lignin from wood. Bachelor’s Thesis, Saima University of applied sciences.
  • Li, M., Z. Jia, G. Wan, S. Wang, and D. Min. 2020. Enhancing isolation of p-coumaric and ferulic acids from sugarcane bagasse by sequential hydrolysis. Chemical Papers 74 (2):499–507. doi:10.1007/s11696-019-00890-y.
  • Liao, J. J., N. H. A. Latif., D. Trache, N. Brosse, and M. H. Hussin. 2020. Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2020.06.168.
  • Liu, C., H. Wang., A. M. Karim, J. Sun, and Y. Wang. 2014. Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews 43 (22):7594–623. doi:10.1039/c3cs60414d.
  • Lu, Y., Y.-C. Lu, H.-Q. Hu, F.-J. Xie, X.-Y. Wei, and X. Fan. 2017. Structural characterization of lignin and its degradation products with spectroscopic methods. Journal of Spectroscopy 2017:1–15. doi:10.1155/2017/8951658.
  • Maia, L. S., A. I. C. D. Silva., E. S. Carneiro, F. M. Monticelli, F. R. Pinhati, and D. R. Mulinari. 2020. Activated carbon from palm fibres used as an adsorbent for methylene blue removal. Journal of Polymers and the Environment. doi:10.1007/s10924-020-01951-0.
  • Martins, L. S., F. M. Monticelli., and D. R. Mulinari. 2020. Influence of the granulometry and fiber content of palm residues on the diesel s-10 oil sorption in polyurethane /palm fiber biocomposites. Results in Materials 8:100143. doi:10.1016/j.rinma.2020.100143.
  • Martins, L. S., N. C. Zanini., L. S. Maia, A. G. Souza, R. F. S. Barbosa, D. S. Rosa, and D. R. Mulinari. 2021. Crude Oil and S500 diesel removal from seawater by polyurethane composites reinforced with palm fiber residues. Chemosphere 267:129288. doi:10.1016/j.chemosphere.2020.129288.
  • Medina, J. D., A. Woiciechowski, A. Zandona Filho, M. D. Noseda, B. S. Kaur, and C. R. Soccol. 2015. Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment – A biorefinery approach. Bioresource Technology 194:172–78. doi:10.1016/j.biortech.2015.07.018.
  • Mohtar, S. S., T. N. Z. T. M. Busu., A. M. Md Noor, N. Shaari, N. A. Yusoff, M. A. B. Khalil, M. I. A. Mutalib, and H. B. Mat. 2015. Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. Bioresource Technology 192:212–18. doi:10.1016/j.biortech.2015.05.029.
  • Morandim-Giannetti, A. A., J. A. M. Agnelli., B. Z. Lanças, R. Magnabosco, S. A. Casarin, and S. H. P. Bettini. 2012. Lignin as additive in polypropylene/ coir composites: Thermal, mechanical and morphological properties. Carbohydrate Polymers 87 (4):2563–68. doi:10.1016/j.carbpol.2011.11.041.
  • Mulinari, D. R., J. R. Guedes., and B. G. Simba. 2017. Low density polyethylene composites reinforced with australian king palm fibers: mechanical and thermal properties. Polymer Bulletin 74 (11):4549–59. doi:10.1007/s00289-017-1963-9.
  • Paixão, W. A., L. S. Martins., N. C. Zanini, and D. R. Mulinari. 2019. Modification and characterization of cellulose fibers from palm coated by ZrO2·nH2O particles for sorption of dichromate ions. Journal of Inorganic and Organometallic Polymers and Materials 1–7. doi:10.1007/s10904-019-01415-6.
  • Raja, K., P. Senthilkumar., G. Nallakumarasamy, and T. Natarajan. 2020. Effect of eco-friendly chemical treatment on the properties of sesbania rostrata fiber. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2020.1725712.
  • Rajeshkumar, G., V. Hariharan., and T. Scalici. 2016. Effect of NaOH Treatment on Properties of Phoenix Sp. Fiber. Journal of Natural Fibers 13 (6):702–13. doi:10.1080/15440478.2015.1130005.
  • Reddy, K. O., C. U. Maheswari., E. Muzenda, M. Shukla, and A. V. Rajulu. 2016. Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf Fibers. Journal of Natural Fibers 13 (1):54–64. doi:10.1080/15440478.2014.984055.
  • Rezende, C. A., M. D. Lima., P. Maziero, E. de Azevedo, W. Garcia, and I. Polikarpov. 2011. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels 4 (1):1. doi:10.1186/1754-6834-4-54.
  • Rippon, J. A., and D. J. Evans. 2012. Improving the Properties of Natural Fibres by Chemical Treatments. Handbook of Natural Fibres. Woodhead Publishing Limited: Philadelphia. doi:10.1533/9780857095510.1.63.
  • Rivas, M., R. L. Barbieri, and L. C. Da Maia. 2012. Plant breeding and in situ utilization of palm trees. Ciência Rural 42 (2):261–69. doi:10.1590/s0103-84782012000200013.
  • Robak, K., and M. Balcerek. 2018. Review of Second-Generation bioethanol production from residual biomass. Food Technology and Biotechnology 56 (2):174–87. doi:10.17113/ftb.56.02.18.5428.
  • Sahoo, S., M. Ö. Seydibeyoĝlu, A. K. Mohanty, and M. Misra. 2011. Characterization of Industrial lignins for their utilization in future value added applications. Biomass & Bioenergy 35 (10):4230–37. doi:10.1016/j.biombioe.2011.07.009.
  • Sánchez, M. L., W. Patiño, and J. Cárdenas. 2020. Physical-mechanical properties of bamboo fibers-reinforced biocomposites: Influence of surface treatment of fibers. Journal of Building Engineering 28. doi:10.1016/j.jobe.2019.101058.
  • Segal, L., J. J. Creely, A.E. Martin, Jr, and C.M. Conrad. 1959. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal 29 (10): 786:794. https://doi.org/10.1177/004051755902901003
  • Silva, N. G. S., T. Faria, and D. R. Mulinari. 2021. Effect of Acetylation with Perchloric Acid as Catalyst in Sugarcane Bagasse Waste. Journal of Natural Fibers 1–15. doi:10.1080/15440478.2021.1875352.
  • Singh, G., S. Jose., D. Kaur, and B. Soun. 2020. Extraction and Characterization of Corn Leaf Fiber. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1787914.
  • Stygar Lopes, M., M. E. Carneiro., A. S. de Andrade, and D. C. Potulski. 2017. Hidrólise ácida para produção de nano lignina em pó. BIOFIX Scientific Journal 3 (1):41. doi:10.5380/biofix.v3i1.56180.
  • Sun, D., B. Wang., H. M. Wang, M. F. Li, Q. Shi, L. Zheng, S. F. Wang, S. J. Liu, and R. C. Sun. 2019. Structural elucidation of tobacco stalk lignin isolated by different integrated processes. Industrial Crops and Products 140:111631. doi:10.1016/j.indcrop.2019.111631.
  • Tang, P. L., O. Hassan., C. S. Yue, and P. M. Abdul. 2020. Lignin Extraction from Oil Palm Empty Fruit Bunch Fiber (OPEFBF) via Different Alkaline Treatments. Biomass Conversion and Biorefinery 10 (1):125–38. doi:10.1007/s13399-019-00413-5.
  • Tejado, A., C. Peña., J. Labidi, J. M. Echeverria, and I. Mondragon. 2007. Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresource Technology 98 (8):1655–63. doi:10.1016/j.biortech.2006.05.042.
  • Tenazoa, C., H. Savastano., S. Charca, M. Quintana, and E. Flores. 2019. The effect of alkali treatment on chemical and physical properties of ichu and cabuya fibers. Journal of Natural Fibers 1–14. doi:10.1080/15440478.2019.1675211.
  • Uma Maheswari, R., M. O. Mavukkandy, U. Adhikari, V. Naddeo, J. Sikder, and H. A. Arafat. 2020. Synergistic effect of humic acid on alkali pretreatment of sugarcane bagasse for the recovery of lignin with phenomenal properties. Biomass & Bioenergy 134:105486. doi:10.1016/j.biombioe.2020.105486.
  • Vardhini, K. J. V., and R. Murugan. 2017. Effect of laccase and xylanase enzyme treatment on chemical and mechanical properties of banana fiber. Journal of Natural Fibers 14 (2):217–27. doi:10.1080/15440478.2016.1193086.
  • Vinod, A., M. R. Sanjay, S. Suchart, and P. Jyotishkumar. 2020. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production 258:120978. doi:10.1016/j.jclepro.2020.120978.
  • Virmond, E., R. F. De Sena, W. Albrecht, C. A. Althoff, R. F. P. M. Moreira, and H. J. José. 2012. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes. Waste Management 32 (10):1952–61. doi:10.1016/j.wasman.2012.05.014.
  • Watkins, D., M. De Nuruddin., M. Hosur, A. Tcherbi-Narteh, and S. Jeelani. 2015. Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology 4 (1):26–32. doi:10.1016/j.jmrt.2014.10.009.
  • Willberg-Keyriläinen, P., and J. Ropponen. 2019. Evaluation of Esterification Routes for Long Chain Cellulose Esters. Heliyon 5 (11):11. doi:10.1016/j.heliyon.2019.e02898.
  • Zanini, N. C., R. F. S. Barbosa., A. G. de Souza, D. S. Rosa, and D. R. Mulinari. 2020. Revaluation of australian palm residues in polypropylene composites: Statistical influence of fiber treatment. Journal of Composite Materials 1–14. doi:10.1177/0021998320960534.
  • Zhang, H., S. Fu., and Y. Chen. 2020. Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. International Journal of Biological Macromolecules 147:607–15. doi:10.1016/j.ijbiomac.2020.01.105.
  • Zhao, B., and A. Huang. 2016. Production of Biofuels and Chemicals from Lignin. Edited by Z. Fang and R. L. Smith Jr. Springer (Singapore). doi:10.1007/978-981-10-1965-4_9.
  • Zoghlami, A., and G. Paës. 2019. Lignocellulosic Biomass: understanding recalcitrance and predicting hydrolysis. Frontiers in Chemistry 7. doi:10.3389/fchem.2019.00874.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.