133
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study of the Flexural Strength of Recycled Dyed Cotton Fiber Reinforced Polypropylene Composites and the Effect of the Use of Maleic Anhydride as Coupling Agent

, , , ORCID Icon, &

References

  • Alcala, M., I. Gonzalez, S. Boufi, F. Vilaseca, and P. Mutje. 2013. All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose. Cellulose 20 (6):2909–21. doi:10.1007/s10570-013-0085-2.
  • Alves, C., A. J. Silva, L. G. Reis, M. Freitas, L. B. Rodrigues, D. E. Alves, and D. E. Alves. 2010. Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production 18 (4):313–27. doi:10.1016/j.jclepro.2009.10.022.
  • Chan, C. M., L. J. Vandi, S. Pratt, P. J. Halley, D. Richardson, A. Werker, and B. Laycock. 2018. Composites of wood and biodegradable thermoplastics: a review. Polymer Reviews 58 (3):444–94. doi:10.1080/15583724.2017.1380039.
  • Davis, A. M., L. E. Hanzly, B. L. DeButts, and J. R. Barone. 2019. Characterization of dimensional stability in flax fiber reinforced polypropylene composites. Polymer Composites 40 (1):132–40. doi:10.1002/pc.24614.
  • Ertaş, M., B. Acemioğlu, M. H. Alma, and M. Usta. 2010. Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust. Journal of Hazardous Materials 183 (1–3):421–27. doi:10.1016/j.jhazmat.2010.07.041.
  • Espinach, F. X., M. A. Chamorro-Trenado, J. Llorens, J. Tresserras, N. Pellicer, F. Vilaseca, and A. Pèlach. 2019. Study of the flexural modulus and the micromechanics of old newspaper reinforced polypropylene composites. Bioresources 14 (2):3578–93.
  • Espinach, F. X., M. Delgado-Aguilar, J. Puig, F. Julian, S. Boufi, and P. Mutjé. 2015. Flexural properties of fully biodegradable alpha-grass fibers reinforced starch-based thermoplastics. Composites Part B: Engineering 81:98–106. doi:10.1016/j.compositesb.2015.07.004.
  • Espinach, F. X., L. A. Granda, Q. Tarrés, J. Duran, P. Fullana-i-Palmer, and P. Mutjé. 2017a. Mechanical and micromechanical tensile strength of eucalyptus bleached fibers reinforced polyoxymethylene composites. Composites Part B: Engineering 116:333–39. doi:10.1016/j.compositesb.2016.10.073.
  • Espinach, F. X., J. A. Mendez, L. A. Granda, M. A. Pelach, M. Delgado-Aguilar, and P. Mutje. 2017b. Bleached kraft softwood fibers reinforced polylactic acid composites, tensile and flexural strengths. In Natural fibre-reinforced biodegradable and bioresorbable polymer composites, ed. A. Lau, 73-90. UK: Elsevier.
  • Gholampour, A., and T. Ozbakkaloglu. 2020. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science 55 (3):829–92.
  • Granda, L., Q. Tarres, F. X. Espinach, F. Julian, A. Mendes, M. Delgado-Aguilar, and P. Mutje. 2016a. Fully biodegradable polylactic composites reinforced with bleached softwood fibers. Cellulose, Chemistry and Technology 50 (3-4):417-22.
  • Granda, L. A., F. X. Espinach, J. A. Méndez, F. Vilaseca, M. Delgado-Aguilar, and P. Mutjé. 2016b. Semichemical fibres of Leucaena collinsii reinforced polypropylene composites: Flexural characterisation, impact behaviour and water uptake properties. Composites Part B: Engineering 97:176–82. doi:10.1016/j.compositesb.2016.04.063.
  • Hole, G., and A. S. Hole. 2020. Improving recycling of textiles based on lessons from policies for other recyclable materials: A minireview. Sustainable Production and Consumption 23:42–51. doi:10.1016/j.spc.2020.04.005.
  • Jha, M. K., V. Kumar, L. Maharaj, and R. J. Singh. 2004. Studies on leaching and recycling of zinc from rayon waste sludge. Industrial & Engineering Chemistry Research 43 (5):1284–95. doi:10.1021/ie020949p.
  • Karadaǧ, E., Ö. B. Üzüm, and D. Saraydin. 2002. Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. European Polymer Journal 38 (11):2133–41. doi:10.1016/S0014-3057(02)00117-9.
  • Kelly, A., and W. Tyson. 1965. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids 13 (6):329–38. doi:10.1016/0022-5096(65)90035-9.
  • Kerni, L., S. Singh, A. Patnaik, and N. Kumar. 2020. A review on natural fiber reinforced composites. Materials Today: Proceedings 28:1616–21.
  • Kumar, R., M. I. Ul Haq, A. Raina, and A. Anand. 2019. Industrial applications of natural fibre-reinforced polymer composites – Challenges and opportunities. International Journal of Sustainable Engineering 12 (3):212–20. doi:10.1080/19397038.2018.1538267.
  • Lopez, J. P., J. Girones, J. A. Mendez, M. A. Pelach, F. Vilaseca, and P. Mutje. 2013. Impact and flexural properties of stone-ground wood pulp-reinforced polypropylene composites. Polymer Composites 34 (6):842–48. doi:10.1002/pc.22486.
  • Lopez, J. P., J. A. Mendez, N. E. El Mansouri, P. Mutje, and F. Vilaseca. 2011. Mean intrinsic tensile properties of stone groundwood fibers from softwood. Bioresources 6 (4):5037–49. doi:10.15376/biores.6.4.5037-5049.
  • Mishra, R., B. Behera, and J. Militky. 2014. Recycling of textile waste into green composites: performance characterization. Polymer Composites 35 (10):1960–67. doi:10.1002/pc.22855.
  • Morlet, A., R. Opsomer, S. Herrmann, L. Baldmon, C. Gillet, and L. Fuchs. 2017. A new textiles economy: Redesigning fashion’s future. Edited by. Ellen MacArthur Foundation. Isle of Wight, UK: Ellen MacArthur Foundation Cowes.
  • Oliver-Ortega, H., M. A. Chamorro-Trenado, J. Soler, P. Mutjé, F. Vilaseca, and F. X. Espinach. 2018. Macro and micromechanical preliminary assessment of the tensile strength of particulate rapeseed sawdust reinforced polypropylene copolymer biocomposites for its use as building material. Construction and Building Materials 168:422–30. doi:10.1016/j.conbuildmat.2018.02.158.
  • Pensupa, N., S. Y. Leu, Y. Hu, C. Du, H. Liu, H. Jing, H. Wang, and C. S. K. Lin. 2017. Recent trends in sustainable textile waste recycling methods: current situation and future prospects. Topics in Current Chemistry 375 (5):76. doi:10.1007/s41061-017-0165-0.
  • Serra, A., Q. Tarrés, J. Claramunt, P. Mutjé, M. Ardanuy, and F. X. Espinach. 2017. Behavior of the interphase of dyed cotton residue flocks reinforced polypropylene composites. Composites Part B: Engineering 128:200–07. doi:10.1016/j.compositesb.2017.07.015.
  • Serra, A., Q. Tarrés, M. Llop, R. Reixach, P. Mutjé, and F. X. Espinach. 2018. Recycling dyed cotton textile byproduct fibers as polypropylene reinforcement. Textile Research Journal 2113–25. doi:10.1177/0040517518786278.
  • Serra-Parareda, F., Q. Tarres, M. Delgado-Aguilar, F. X. Espinach, P. Mutje, and F. Vilaseca. 2019. Biobased composites from biobased-polyethylene and barley thermomechanical fibers: micromechanics of composites. Materials 12 (24):13. doi:10.3390/ma12244182.
  • Shah, D. U., R. K. Nag, and M. J. Clifford. 2016. Why do we observe significant differences between measured and ‘back-calculated’ properties of natural fibres? Cellulose 23 (3):1481–90. doi:10.1007/s10570-016-0926-x.
  • Shirvanimoghaddam, K., B. Motamed, S. Ramakrishna, and M. Naebe. 2020. Death by waste: Fashion and textile circular economy case. Science of the Total Environment 718:137317. doi:10.1016/j.scitotenv.2020.137317.
  • Shuhua, W., Y. Xiaoying, C. Xiaogang, H. Wensheng, and N. Mei. 2020. Recycling of cotton fibers separated from the waste blend fabric. Journal of Natural Fibers 17 (4):520–31. doi:10.1080/15440478.2018.1503130.
  • Sood, M., and G. Dwivedi. 2018. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum 27 (4):775–83. doi:10.1016/j.ejpe.2017.11.005.
  • Sullins, T., S. Pillay, A. Komus, and H. Ning. 2017. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering 114:15–22. doi:10.1016/j.compositesb.2017.02.001.
  • Tarrés, Q., H. Oliver-Ortega, F. X. Espinach, P. Mutjé, M. Delgado-Aguilar, and J. A. Méndez. 2019. Determination of mean intrinsic flexural strength and coupling factor of natural fiber reinforcement in polylactic acid biocomposites. Polymers 11 (11):1736. doi:10.3390/polym11111736.
  • Thomason, J. L., and J. L. Rudeiros-Fernández. 2018. A review of the impact performance of natural fiber thermoplastic composites. Frontiers in Materials 5:60. doi:10.3389/fmats.2018.00060.
  • Vigneswaran, C., M. Ananthasubramanian, and P. Kandhavadivu. 2014. Bioprocessing of natural fibres. In Chap 3 in Bioprocessing of textiles, ed. C. Vigneswaran, M. Ananthasubramanian, and P. Kandhavadivu, 53–188. New Delhi: Woodhead Publishing India.
  • Yallew, T. B., P. Kumar, and I. Singh. 2016. Mechanical behavior of nettle/wool fabric reinforced polyethylene composites. Journal of Natural Fibers 13 (5):610–18. doi:10.1080/15440478.2015.1093576.
  • Zhong, T., R. Dhandapani, D. Liang, J. Wang, M. P. Wolcott, D. Van Fossen, and H. Liu. 2020. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films. Carbohydrate Polymers 240:116283. doi:10.1016/j.carbpol.2020.116283.
  • Zuccarello, B., and R. Scaffaro. 2017. Experimental analysis and micromechanical models of high performance renewable agave reinforced biocomposites. Composites Part B: Engineering 119:141–52. doi:10.1016/j.compositesb.2017.03.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.