206
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structure and Performance of Cuticles Isolated from Wool Fibers Using Different Approaches

, , , &

References

  • Aluigi, A., et al. 2007. Study on the structure and properties of wool keratin regenerated from formic acid. International Journal of Biological Macromolecules 41 (3):266–73. doi:10.1016/j.ijbiomac.2007.03.002.
  • Barton, P. M. J. 2011. A forensic investigation of single human hair fibres using FTIR-ATR spectroscopy and chemometrics. phD Thesis, Queensland University of Technology.
  • Bhavsar, P. S., et al. 2017. Superheated water hydrolyzed keratin: A new application as a foaming agent in foam dyeing of cotton and wool fabrics. ACS Sustainable Chemistry & Engineering 5 (10):9150–59. doi:10.1021/acssuschemeng.7b02064.
  • Bradbury, J. H. 1959. Separation and analysis of scale-rich material from wool. Nature 183 (4657):305–06. doi:10.1038/183305a0.
  • Bradbury, J. H., and D. E. Peters. 1972. Method for the complete removal of cuticle from wool fibers. Textile Research Journal 42 (4):248–50. doi:10.1177/004051757204200409.
  • Bringans, S. D., et al. 2007. Characterization of the exocuticle a-layer proteins of wool. Experimental Dermatology 16 (11):951–60. doi:10.1111/j.1600-0625.2007.00610.x.
  • Brown, E. M., et al. 2016. Comparison of methods for extraction of keratin from waste wool. Agricultural Sciences 7 (10):670–79. doi:10.4236/as.2016.710063.
  • Cassoni et al, A. C. 2018. Novel eco-friendly method to extract keratin from hair. ACS Sustainable Chemistry & Engineering 6 (9):12268–74. doi:10.1021/acssuschemeng.8b02680.
  • Church, J. S., G. L. Corino, and A. L. Woodhead. 1997. The analysis of merino wool cuticle and cortical cells by Fourier transform Raman spectroscopy. Biopolymers 42 (1):7–17. doi:10.1002/(SICI)1097-0282(199707)42:1<7::AID-BIP2>3.0.CO;2-S.
  • Duer, M. J., N. McDougal, and R. C. Murray. 2003. A solid-state NMR study of the structure and molecular mobility of α-keratin. Physical Chemistry Chemical Physics 5 (13):2894–99. doi:10.1039/b302506c.
  • Feroz, S., et al. 2020. Keratin - Based materials for biomedical applications. Bioactive Materials 5 (3):496–509. doi:10.1016/j.bioactmat.2020.04.007.
  • Geiger, W. B., et al. 1941. Nature of the resistance of wool to disgestion by enzymes. Journal of Research of the National Bureau of Standards 27 (5):459–68. doi:10.6028/jres.027.032.
  • Hilterhaus-Bong, S., and H. Zahn. 1987. Contributions to the chemistry of human hair. 1. Analyses of cystine, cysteine and cystine oxides in untreated human hair. International Journal of Cosmetic Science 9 (3):101–10. doi:10.1111/j.1467-2494.1987.tb00467.x.
  • Istrate, D., et al. 2016. Keratin made micro-tubes: The paradoxical thermal behavior of cortex and cuticle. International Journal of Biological Macromolecules 89 (141–8130):592–98. doi:10.1016/j.ijbiomac.2016.05.035.
  • Istrate, D. V. 2011. Heat induced denaturation of fibrous hard α-keratins and their reaction with various chemical regents. Master diss., RWTH Aachen University.
  • Jiang, Z., et al. 2018. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea. International Journal of Biological Macromolecules 119:423–30. doi:10.1016/j.ijbiomac.2018.07.161.
  • Koehn, H.,et al. 2015. Identification and quantitation of major structural proteins from enriched cuticle fractions of wools of different breeds. New Zealand Journal of Agricultural Research 58 (4):463–71. doi:10.1080/00288233.2015.1086389.
  • Koehn, H., et al. 2010. The proteome of the wool cuticle. Journal of Proteome Research 9 (6):2920–28. doi:10.1021/pr901106m.
  • Kulkarni, V. G., and H. Baumann. 1980. Studies on some wool components : Skin flakes, cuticle, and cell membrane material. Textile Research Journal 50 (1):6–9. doi:10.1177/004051758005000102.
  • Kuzuhara, A., and T. Hori. 2005. Reduction mechanism of L-cysteine on keratin fibers using microspectrophotometry and Raman spectroscopy. Biopolymers 79 (6):324–34. doi:10.1002/bip.20362.
  • Kuzuhara, A., and T. HORI. 2003. Reduction mechanism of thioglycolic acid on keratin fibers using microspectrophotometry and FT-Raman spectroscopy. Polymer 44 (26):7963–70. doi:10.1016/j.polymer.2003.10.049.
  • Lewis, D. M., and J. A. Rippon. 2013. The coloration of wool and other keratin fibres. Original ed. 1st ed. Singapore: John Wiley & Sons, Ltd.
  • Marshall, R. C., and K. F. Ley. 1986. Examination of proteins from wool cuticle by two-dimensional gel electrophoresis. Textile Research Journal 56 (12):772–74. doi:10.1177/004051758605601210.
  • Martí, M., et al. 2007. Thermal analysis of merino wool fibres without internal lipids. Journal of Applied Polymer Science 104 (1):545–51. doi:10.1002/app.25586.
  • McGregor, B. A., X. Liu, and X. G. Wang. 2017. Comparisons of the Fourier transform infrared spectra of cashmere, guard hair, wool and other animal fibres. The Journal of the Textile Institute 109 (6):813–22. doi:10.1080/00405000.2017.1372057.
  • Moharram, M. A., T. Z. Abdel-Rehim, and S. M. Rabie. 1981. Infrared study of the effect of heat on wool. Journal of Applied Polymer Science 26:921-932. doi:10.1002/app.1981.070260315
  • Peets, P., et al. 2019. Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Heritage Science 7(93). doi: 10.1186/s40494-019-0337-z.
  • Plowman, J. E., D. P. Harland, and S. Deb-Choudhury. 2018. The hair fibre: Proteins, structure and development. 1st ed. United Kingdom: Springer.
  • Plowman, J. E., et al. 2003. The effect of oxidation or alkylation on the separation of wool keratin proteins by two‐dimensional gel electrophoresis. Proteomics 3 (6):942–50. doi:10.1002/pmic.200300419.
  • Rama, R. D., and V. B. Gupta. 2006. Thermal characteristics of wool fibers. Journal of Macromolecular Science, Part B 31 (2):149–62. doi:10.1080/00222349208215509.
  • Ogawa, S., et al. 2008. Action of thioglycolic acid and L-cysteine to disulfide cross-links in hair fibers during permanent waving treatment. Fiber 64 (6):137–44. doi:10.2115/fiber.64.137.
  • Shavandi, A., et al. 2017. Keratin: Dissolution, extraction and biomedical application. Biomaterials Science 5:1699–735. doi:10.1039/C7BM00411G.
  • Stewart, K., et al. 1997. Isolating the cuticle layer of wool: A comparison of methods. Journal of the Society of Dyers and Colourists 113 (1):3. doi:10.1111/j.1478-4408.1997.tb01844.x.
  • Wang, K.,et al. 2016. Extracting keratin from wool by using l-cysteine. Green Chemistry 18 (2):476–81. doi:10.1039/c5gc01254f.
  • Wojciechowska, E., A. Włochowicz, and B. A. Wesełucha. 1999. Application of Fourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin. Journal of Molecular Structure 511– 512 (22–2860):307–18. doi:10.1016/S0022-2860(99)00173-8.
  • Zhang, N,et al. 2018. Highly efficient and eco-friendly wool degradation by L-cysteine-assisted esperase. Journal of Cleaner Production 192 (959–6526):433–42. doi:10.1016/j.jclepro.2018.05.008.
  • Zhang,et al. 2014. Thermal properties of wool fabric treated byphosphorus-doped silica sols through sol-gel method. Thermal Science 18 (5):1603–05. doi:10.2298/tsci1405603z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.