58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanical Evaluation of Vegetal Fibers Impregnated in Vacuum in the Cultivation of Pea (Pisum sativum L.)

, ORCID Icon &

References

  • Álvarez-Sánchez, D. E., E. D. Gómez-López, and H. R. Ordóñez-Jurado. 2019. Tipología de fincas productoras de arveja (Pisum sativum L.) en la subregión Sur de Nariño, Colombia [Typology of pea-producing farms (Pisum sativum L.) in the southern subregion of Nariño, Colombia]. Ciencia y Tecnología Agropecuaria 20 (3):659–77. doi:10.21930/rcta.vol20_num3_art:1593.
  • American Society for Testing and Materials. 2007. ASTM D3822-07 standard test method for tensile properties of single textile fibers. ASTM.
  • Arias, A., A. Ramirez, V. Fernandez, and N. Sanchez. 2016. The use of Common Duckweed (Lemna minor) in the treatment of wastewater from the washing of sisal fiber (Furcraea bedinghausii). Ingenieria y Competitividad 18 (2): 25–34.
  • Arpitha, G. R., and B. Yogesha. 2017. An overview on mechanical property evaluation of natural fiber reinforced polymers. Materials Today: Proceedings 4 (2):2755–60. doi:10.1016/j.matpr.2017.02.153.
  • Bessadok, A., S. Marais, S. Roudesli, C. Lixon, and M. Métayer. 2008. Influence of chemical modifications on water-sorption and mechanical properties of agave fibres. Composites Part A: Applied Science Manufacturing 39 (1):29–45. doi:10.1016/j.compositesa.2007.09.007.
  • Betoret, E., N. Betoret, D. Vidal, and P. Fito. 2011. Functional foods development: Trends and technologies. Trends in Food Science Technology 22 (9):498–508. doi:10.1016/j.tifs.2011.05.004.
  • Blas-Sevillano, R. H., T. Veramendi, B. La Torre, C. E. Velezmoro-Sánchez, A. I. Oliva, M. E. Mena-Martínez, W. A. Herrera–Kao, J. Uribe-Calderon, and J. M. Cervantes-Uc. 2018. Physicochemical characterization of several types of naturally colored cotton fibers from peru. Carbohydrate Polymers 197:246–52. doi:10.1016/j.carbpol.2018.06.006.
  • Centeno-Mora, O. 2016. Estimación de proteína en semolina de arroz, mediante aplicación de regresiones en el infrarrojo cercano [estimation of protein in semolina of rice, by application of regressions in the near infrared]. Agronomía Mesoamericana 27 (2):367–76. doi:10.15517/am.v27i2.21153.
  • Chegdani, F., and M. El Mansori. 2018. Friction scale effect in drilling natural fiber composites. Tribology International 119:622–30. doi:10.1016/j.triboint.2017.12.006.
  • Chiralt, A., N. Martínez-Navarrete, J. Martínez-Monzó, P. Talens, G. Moraga, A. Ayala, and P. Fito. 2001. Changes in mechanical properties throughout osmotic processes: Cryoprotectant effect. Journal of Food Engineering 49 (2–3):129–35. doi:10.1016/S0260-8774(00)00203-X.
  • Conalgodón(2007). Resultados de la cosecha algodonera Costa-Llanos 2006/2007. Recuperado de Url:http://www.Conalgodon.com/portal/02_cos-Tosprod
  • Contreras, M. F., W. A. Hormaza, and A. Marañón. 2009. Fractografía de la fibra natural extraida del fique y de un material compuesto reforzado con tejido de fibra de fique y matriz resina poliester [Fractography of natural fiber extracted from the fique and a composite material reinforced with fiber fabric and polyester resin matrix]. Revista Latinoamericana De Metalurgia Y Materiales S1 (1):57–67.
  • Córdoba, C., J. Mera, D. Martínez, and J. Rodríguez. 2010. Aprovechamiento de polipropileno y polietileno de alta densidad reciclados, reforzados con fibra vegetal, tetera (Stromanthe Stromathoides) [Use of recycled polypropylene and high-density polyethylene, reinforced with vegetable fiber, tetera (Stromanthe Stromthoides)]. Revista Iberoamericana de Polímeros 11 (7):417–27.
  • Coreño-Alonso, J., and M. T. Méndez-Bautista. 2010. Relación estructura-propiedades de polímeros [relationship between structure and properties of polymers]. Educación Química 21 (4):291–99. doi:10.1016/S0187-893X(18)30098-3.
  • De Silva, R., and N. Byrne. 2017. Utilization of cotton waste for regenerated cellulose fibres: influence of degree of polymerization on mechanical properties. Carbohydrate Polymers 174:89–94. doi:10.1016/j.carbpol.2017.06.042.
  • Deaquiz-Oyola, Y. A., and B. L. M. Medina. 2016. Producción y biosíntesis de fibras vegetales. Una revisión [production and vegetable fibre biosynthesis. A review]. Conexión Agropecuaria JDC 6 (1):29–42.
  • Dochia, M., C. Sirghie, R. M. Kozłowski, and Y. Roskwitalski, Z. 2012. Cotton fibres. In Handbook of natural fibres (pp. 11–23). Elsevier. Cambridge: Woodhead Publishing.
  • Elanchezhian, C., B. V. Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar, and M. K. Saravanakumar. 2018. Review on mechanical properties of natural fiber composites. Materials Today: Proceedings 5 (1):1785–90. doi:10.1016/j.matpr.2017.11.276.
  • Emadian, S. M., T. T. Onay, and B. Demirel. 2017. Biodegradation of bioplastics in natural environments. Waste Management 59:526–36. doi:10.1016/j.wasman.2016.10.006.
  • Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate polymers 106: 77–83. 10.1016/j.carbpol.2014.02.016
  • Fito, P., A. Andrés, A. Chiralt, and P. Pardo. 1996. Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems. Journal of Food Engineering 27 (3):229–40. doi:10.1016/0260-8774(95)00005-4.
  • Fito, P., A. Chiralt, N. Betoret, M. Gras, M. Cháfer, J. Martinez-Monzó, A. Andrés, and D. Vidal. 2001. Vacuum impregnation and osmotic dehydration in matrix engineering: application in functional fresh food development. Journal of Food Engineering 49 (2–3):175–83. doi:10.1016/S0260-8774(00)00220-X.
  • Forero, A. F., and G. A. Ligarreto. 2009. Evaluación de dos sistemas de tutorado para el cultivo de la arveja voluble (Pisum sativum L.) en condiciones de la Sabana de Bogotá [Evaluation of two training systems for indeterminate pea (Pisum sativum L.) culture in conditions of the Bogota Plateau]. Revista Colombiana De Ciencias Hortícolas 3 (1):81–94. doi:10.17584/rcch.2009v3i1.1201.
  • Hughes, M. 2012. Defects in natural fibres: Their origin, characteristics and implications for natural fibre-reinforced composites. Journal of Materials Science 47 (2):599–609. doi:10.1007/s10853-011-6025-3.
  • Jmal, H., N. Bahlouli, C. Wagner-Kocher, D. Leray, F. Ruch, J.-N. Munsch, and M. Munsch. 2018. Influence of the grade on the variability of the mechanical properties of polypropylene waste. Waste Management 75:160–73. doi:10.1016/j.wasman.2018.02.006.
  • Johansson, C., J. Bras, I. Mondragon, P. Nechita, D. Plackett, P. Simon, D. G. Svetec, S. Virtanen, M. G. Baschetti, C. Breen, et al. 2012. Renewable fibers and bio-based materials for packaging applications - A review of recent developments. BioResources 7(2):2506–52. doi:10.15376/biores.7.2.2506-2552.
  • John, M. J., and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71 (3):343–64. doi:10.1016/j.carbpol.2007.05.040.
  • Kicińska-Jakubowska, A., E. Bogacz, and M. Zimniewska. 2012. Review of natural fibers. part I-vegetable fibers. Journal of Natural Fibers 9 (3):150–67. doi:10.1080/15440478.2012.703370.
  • Manna, S., P. Saha, D. Roy, R. Sen, B. Adhikari, and S. Das. 2013. Enhanced biodegradation resistance of biomodified jute fibers. Carbohydrate Polymers 93 (2):597–603. doi:10.1016/j.carbpol.2012.11.061.
  • Milošević, M., A. Krkobabić, M. Radoičić, Z. Šaponjić, T. Radetić, and M. Radetić. 2017. Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2 nanoparticles in soil. Carbohydrate Polymers 158:77–84. doi:10.1016/j.carbpol.2016.12.006.
  • Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen. 2004. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering 289 (11):955–74. doi:10.1002/mame.200400132.
  • Muñoz-velez, M. F., M. A. Hidalgo-Salazar, and J. H. Mina-Hernandez. 2014. Fique fiber an alternative for reinforced plastics. influence of surface modification. Biotecnología en el Sector Agropecuario y Agroindustrial 12 (2):60–70.
  • NTC 3941. Textiles. Cordeles de cabuya.
  • NTC 992. Textiles. Fibras naturales. Cabuya para hilados y tejidos.
  • Ovalle-Serrano, S. A., C. Blanco-Tirado, and M. Y. Combariza. 2018. Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose 25 (1):151–65. doi:10.1007/s10570-017-1599-9.
  • Pantoja, D., K. Muñoz, and O. Checa. 2014. Evaluation and correlation of yield components in advanced lines of pea Pisum sativum with afila gene. Revista De Ciencias Agrícolas 31 (2):24–39. doi:10.22267/rcia.143102.29.
  • Pantoja, D. C., O. Osorio, D. F. Mejía, and H. A. Váquiro. 2016. Processing of peas (Pisum sativum L.). part 1: modelling of the thin layer drying kinetic of pea, varieties obonuco andina and sureña. Información Tecnológica 27 (1):69–80. doi:10.4067/S0718-07642016000100009.
  • Puente-Díaz, L., E. Echegaray-Pacheco, E. Castro-Montero, and K. Di Scala. 2013. Application of mathemathical models to infrared assisted drying process of lemon waste (Citrus limon (L.) Burm. F. cv. Genova). Dyna 80 (181):91–97.
  • Restrepo, A. M., A. Arredondo, C. Morales, M. Tamayo, Y. L. Benavides, V. Bedoya, and C. Vélez. 2012. Application of the vacuum impregnation technique in the development of minimally processed orange peels, fortified with potassium, sodium and vitamins B1, B6 and B9. Journal of Engineering and Technolology 1 (1):8–16.
  • Revelo, J. D., O. Osorio, O. Checa, and H. A. Vaquiro. 2019. Evaluation of the loss of mechanical quality of three natural fibers as alternative supports in the agricultural production of pea (Pisum sativum L.). Información Tecnológica 30 (5):101–10. doi:10.4067/S0718-07642019000500101.
  • Rodríguez, L. J., W. A. Sarache, and C. E. Orrego. 2014. Polyester composites reinforced with banana/plantain (musa paradisiaca) fiber chemically modified. Comparison with fiberglass and fique (furcraea andina). Información Tecnológica 25 (5):27–34. doi:10.4067/S0718-07642014000500005.
  • Rong, M. Z., M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng. 2001. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technolology 61 (10):1437–47. doi:10.1016/S0266-3538(01)00046-X.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers 92 (2):1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Symington, M. C., W. M. Banks, O. D. West, and R. A. Pethrick. 2009. Tensile testing of cellulose based natural fibers for structural composite applications. Journal of Composite Materials 43 (9):1083–108. doi:10.1177/0021998308097740.
  • Tapia, C., C. Paredes, A. Simbaña, and J. Bermúdez. 2006. Aplicación de las fibras naturales en el desarrollo de materiales compuestos y como biomasa [application of natural fibers in the development of composite materials and as biomass]. Revista Tecnológica-ESPOL 19 (1):113–20.
  • Thakur, V. K., Ed. 2013. Green Composites from Natural Resources. 1st ed. Boca raton: CRC Press.
  • UNCTAD. 2014. Biotrade – Designer’s Toolkit 1, Materials, Sustainable Biodiversity, Fashion Industry Review, Community Impact. In Fique or Cabuya Furcraea spp (p. 12). Geneva: United Nations Publication.
  • Valero-Valdivieso, M. F., Y. Ortegón, and Y. Uscategui. 2013. Biopolímeros: Avances y perspectivas [biopolymers: Progress and prospects]. Dyna 80 (181):171–80.
  • Viel, M., F. Collet, and C. Lanos. 2018. Chemical and multi-physical characterization of agro-resources’ by-product as a possible raw building material. Industrial Crops and Products 120:214–37. doi:10.1016/j.indcrop.2018.04.025.
  • Vignon, M. R., L. Heux, M.-E. Malainine, and M. Mahrouz. 2004. Arabinan-cellulose composite in opuntia ficus-indica prickly pear spines. Carbohydrate Research 339 (1):123–31. doi:10.1016/j.carres.2003.09.023.
  • Yousif, B. F., and N. S. M. El-Tayeb. 2009. Mechanical and wear properties of oil palm and glass fibres reinforced polyester composites. International Journal of Precision Technology 1 (2):213–22. doi:10.1504/IJPTECH.2009.02638.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.