267
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Cellulose Nanofibrils as Reinforcement in the Process Manufacture of Paper Handsheets

, , , & ORCID Icon

References

  • Abdul Khalil, H. P., Y. Davoudpour, M. N. Islam, A. Mustapha, K. Sudesh, R. Dungani, and M. Jawaid. 2014. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers 99:649–65. doi:10.1016/j.carbpol.2013.08.069.
  • American Society for Testing and Materials (ASTM) International. 2016. E96. E96M-05, Standard test methods for water vapor transmission of materials. doi: 10.1520/E0096_E0096M-16.
  • Balea, A., J. L. Sanchez-Salvador, M. C. Monte, N. Merayo, C. Negro, and Á. Blanco. 2019. In situ production and application of cellulose nanofibers to improve recycled paper production. Molecules 24 (9):1–13. doi:10.3390/molecules24091800.
  • Bardet, R., and J. Bras. 2014. Cellulose nanofibers and their use in paper industry. In Handbook of green materials, edited by O. J. Rojas, M. Sain, K. O. Niska, A. P. Mathew, and A. Bismarck, 207–32. Singapore: World Scientific Publishing Company. doi: 10.1142/9789814566469_0013.
  • Boufi, S., I. González, M. Delgado-Aguilar, Q. Tarrès, M. À. Pèlach, and P. Mutjé. 2016. Nanofibrillated cellulose as an additive in papermaking process: A review. Carbohydrate Polymers 154:151–66. doi:10.1016/j.carbpol.2016.07.117.
  • Brodin, F. W., Ø. W. Gregersen, and K. Syverud. 2014. Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material – A review. Nordic Pulp & Paper Research Journal 29 (1):156–66. doi:10.3183/npprj-2014-29-01-p156-166.
  • Dias, M. C., M. C. Mendonça, R. A. P. Damásio, U. L. Zidanes, F. A. Mori, S. R. Ferreira, and G. H. D. Tonoli. 2019. Influence of hemicellulose content of Eucalyptus and Pinus fibers on the grinding process for obtaining cellulose micro/nanofibrils. Holzforschung 73 (11):1035–46. doi:10.1515/hf-2018-0230.
  • French, A. D. 2014. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21 (2):885–96. doi:10.1007/s10570-013-0030-4.
  • González, I., S. Boufi, M. A. Pèlach, M. Alcalà, F. Vilaseca, and P. Mutjé. 2012. Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7 (4):5167–80. doi:10.15376/biores.7.4.5167-5180.
  • Guan, M., X. An, and H. Liu. 2019. Cellulose nanofiber (CNF) as a versatile filler for the preparation of bamboo pulp based tissue paper handsheets. Cellulose 26 (4):2613–24. doi:10.1007/s10570-018-2212-6.
  • Habibi, Y. 2014. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews 43 (5):1519–42. doi:10.1039/c3cs60204d.
  • Hassan, M. L., J. Bras, E. Mauret, S. M. Fadel, E. A. Hassan, and N. A. El-Wakil. 2015. Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Industrial Crops and Products 64:9–15. doi:10.1016/j.indcrop.2014.11.004.
  • Hubbe, M. A., and P. Pruszynski. 2020. Greaseproof paper products: a review emphazing ecofriendly approaches. BioResources 15 (1):1978–2004. doi:10.15376/biores.15.1.1978-2004.
  • Kasmani, J. E., and A. Samariha. 2019. Effect of nano-cellulose on the improvement of the properties of paper newspaper produced from chemi-mechanical pulping. BioResources 14:8935–49. doi:10.15376/biores.14.4.8935-8949.
  • Lavoine, N., I. Desloges, A. Dufresne, and J. Bras. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90 (2):735–64. doi:10.1016/j.carbpol.2012.05.026.
  • Mashkour, M., E. Afra, and H. Resalati. 2019. Direct esterification of reinforced papers by immersion method and evaluation of their properties. Wood Science and Technology 53 (5):1035–50. doi:10.1007/s00226-019-01115-x.
  • Matos, L. C., V. D. Rompa, R. A. P. Damásio, J. M. Marconcini, and G. H. D. Tonoli. 2019. Incorporação de nanomateriais e emulsão de ceras no desenvolvimento de papéismulticamadas. Scientia Forestalis 47:177–91. doi:10.18671/scifor.v47n122.01.
  • Merayo, N., A. Balea, E. de la Fuente, Á. Blanco, and C. Negro. 2017. Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24 (7):2987–3000. doi:10.1007/s10570-017-1302-1.
  • Nakagaito, A., and H. Yano. 2004. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high strength plant fiber based composites. Applied Physics A Materials Science & Processing 78 (4):547–52. doi:10.1007/s00339-003-2453-5.
  • Nam, S., A. D. French, B. D. Condon, and M. Concha. 2016. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose I β and cellulose II. Carbohydrate Polymers 135:1–9. doi:10.1016/j.carbpol.2015.08.035.
  • Osong, S. H., S. Norgren, and P. Engstrand. 2016. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: A review. Cellulose 23 (1):93–123. doi:10.1007/s10570-015-0798-5.
  • Potulski, D. C., G. I. B. de Muniz, U. Klock, and A. S. de Andrade. 2014. The influence of incorporation of microfibrillated cellulose on mechanical strength properties of paper. Scientia Forestalis 42:345–51.
  • Samyn, P., A. Barhoum, T. Öhlund, and A. Dufresne. 2018. Review: Nanoparticles and nanostructured materials in papermaking. Journal of Materials Science 53 (1):146–84. doi:10.1007/s10853-017-1525-4.
  • Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al. 2012. Fiji: An open-source platform for biological-image analysis. Nature Methods 9 (7):676–82. doi:10.1038/nmeth.2019.
  • Segal, L., and C. M. Conrad. 1957. The characterization of cellulose derivatives by means of the X-ray diffractometer. 1st ed. Ann Arbor: American Dyestuff Reporter.
  • Taipale, T., M. Österberg, A. Nykänen, J. Ruokolainen, and J. Laine. 2010. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17 (5):1005–20. doi:10.1007/s10570-010-9431-9.
  • Tanpichai, S., S. Witayakran, Y. Srimarut, W. Woraprayote, and Y. Malila. 2019. Porosity, density and mechanical properties of the paper of steam exploded bamboo microfibers controlled by nanofibrillated cellulose. Journal of Materials Research and Technology 8 (4):3612–22. doi:10.1016/j.jmrt.2019.05.024.
  • Tarrés, Q., M. C. Area, M. E. Vallejos, N. V. Ehman, M. Delgado-Aguilar, and P. Mutjé. 2020. Lignocellulosic nanofibers for the reinforcement of brown line paper in industrial water systems. Cellulose 27 (18):10799–809. doi:10.1007/s10570-020-03133-6.
  • Technical Association of the Pulp and Paper Industry (Tappi). 2002. T403. Om-02, Bursting strength of pulp.
  • Technical Association of the Pulp and Paper Industry (Tappi). 2004. T414. Om-04, Internal tearing resistance of paper (Elmendorftype method).
  • Technical Association of the Pulp and Paper Industry (Tappi). 2006a. T205. Sp-02, Forming handsheets for physical tests of pulp.
  • Technical Association of the Pulp and Paper Industry (Tappi). 2006b. T551. Om-06, Thickness of paper and paperboard (Soft platen method).
  • Technical Association of the Pulp and Paper Industry (Tappi). 2006c. T220. Sp-06, Physical testing of pulp handsheets.
  • Technical Association of the Pulp and Paper Industry (Tappi). 2007. T536. Om-07, Resistance of paper to passage of air (high-pressure gurley method).
  • Technical Association of the Pulp and Paper Industry (Tappi). 2008. T410. Om-08, Grammage of paper and paperboard (Weight per unit area).
  • Technical Association of the Pulp and Paper Industry (Tappi). 2015. T248. Sp-15, Laboratory beating of pulp (PFI mill method).
  • Technical Association of the Pulp and Paper Industry (Tappi) standard. 2006d. T494. Om-06, Tensile properties of paper and paperboard (using constant rate of elongation apparatus).
  • Zambrano, F., H. Starkey, Y. Wang, C. A. de Assis, R. Venditti, L. Pal, H. Jameel, M. A. Hubbe, O. J. Rojas, and R. Gonzalez. 2020. Using micro- and nanofibrillated cellulose as a m eans to reduce weight of paper products: a review. BioResources 15:4553–90. doi:10.15376/biores.15.2.Zambrano.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.