663
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermal, Chemical and Mechanical Properties of Regenerated Bacterial Cellulose Coated Cotton Fabric

ORCID Icon, & ORCID Icon

References

  • Alonso, P. E. D. G. 2017. Alternative synthesis methods of electrically conductive bacterial cellulose-polyaniline composites for potential drug delivery application. PhD diss., Universidade da Madeira.
  • Ashjaran, A., M. E. Yazdanshenas, A. Rashidi, R. Khajavi, and A. Rezaee. 2013. Overview of bio nanofabric from bacterial cellulose. Journal of the Textile Institute 104 (2):121–31. doi:10.1080/00405000.2012.703796.
  • Auta, R., G. Adamus, M. Kwiecien, I. Radecka, and P. Hooley. 2017. Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. African Journal of Biotechnology 16 (10):470–82.
  • Azeredo, H., H. Barud, C. S. Farinas, V. M. Vasconcellos, and A. M. Claro. 2019. Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems 3:7.
  • Bielecki, S. 2019. Upstream processing leading to improvements in bacterial nano-cellulose properties and productivity. In 4th International Symposium On Bacterial Nanocellulose 8( 8):1352, Porto, Portugal , October 3-4.
  • Charreau, H., L. Foresti, M., and A. Vazquez 2013. Nanocellulose patents trends: A comprehensive review on patents on cellulose nanocrystals, micro fibrillated, and bacterial cellulose. Recent patents on nanotechnology 7( 1): 56–80.
  • Chawla, P. R., I. B. Bajaj, S. A. Survase, and R. S. Singhal. 2009. Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology 47 (2):107–24.
  • Chen, P., H. S. Kim, S. M. Kwon, Y. S. Yun, and H. J. Jin. 2009. Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet spinning. Current Applied Physics 9 (2):96–99.
  • Chen, X. 2015. Degradation studies on plant cellulose and bacterial cellulose by FT-IR and ESEM, Ph.D. Diss., University of Birmingham
  • Cheng, Q. Y., C. S. Guan, M. Wang, Y. D. Li, and J. B. Zeng. 2018. Cellulose nanocrystal coated cotton fabric with super hydrophobicity for efficient oil/water separation. Carbohydrate Polymers 199:390–96.
  • Chidambaram, P., and R. Govindan. 2012. Influence of blend ratio on thermal properties of bamboo/cotton blended woven fabrics. Science, Engineering and Health Studies (Former Name: Silpakorn University Science and Technology Journal) 6 (2):49–55.
  • Choi, S. M., and E. J. Shin. 2020. The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. Nanomaterials 10 (3):406.
  • Ciechanska, D. 2004. Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibers Text East Eur 12 (4):69–72.
  • Çoban, E. P., and H. Biyik. 2011. Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. Afr. J. Microbiol. Res 5 (9):1037–45.
  • Coelho, R. M. D., A. Almeida, R. Q. G. do Amaral, R. N. da Mota, and P. H. M. de Sousa. 2020. Kombucha. International Journal of Gastronomy and Food Science 22:100272.
  • Costa, A., C. Galdino, H. Meira, J. Macedo, S. Silva, M. A. Rocha, and L. Sarubbo. 2019a. Bacterial cellulose is applied to the production of an electrical insulating biomaterial. Chemical Engineering Transactions 74:1123–28.
  • Costa, A. F. D. S., J. D. de Amorim, F. C. G. Almeida, I. D. de Lima, S. C. de Paiva, M. A. V. Rocha, and L. A. Sarubbo. 2019b. Dyeing of bacterial cellulose films using plant-based natural dyes. International Journal of Biological Macromolecules 121:580–87.
  • Costa, A. F. S., M. A. V. Rocha, and L. A. Sarubbo. 2017. Bacterial cellulose: An eco-friendly bio textile. International Journal of Textile and Fashion Technology 7:11–26.
  • De Roos, J., and L. De Vuyst. 2018. Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology 49:115–19.
  • Dickmann, M., R. Schneider, S. Armando, K. Seehusen, P. Hager, M. J. Strauss, and F. M. Mann. 2017. Analysis of the role of acidity and tea substrate on the inhibition of α-amylase by Kombucha. J Nutr Food Technol 0 (0):1–5.
  • Domskiene, J., F. Sederaviciute, and J. Simonaityte. 2019. Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology 31 (5):644–52.
  • El Messiry, M., A. El Ouffy, and M. Issa. 2015. Microcellulose particles for surface modification to enhance moisture management properties of polyester, and polyester/cotton blend fabrics. Alexandria Engineering Journal 54 (2):127–40.
  • Fernandes, I. D. A. A., A. C. Pedro, V. R. Ribeiro, D. G. Bortolini, M. S. C. Ozaki, G. M. Maciel, and C. W. I. Haminiuk. 2020. Bacterial cellulose: From production optimization to new applications. International Journal of Biological Macromolecules 164:2598–611.
  • Fernandes, M., M. Gama, F. Dourado, and A. P. Souto. 2019. Development of novel bacterial cellulose composites for the textile and shoe industry. Microbial Biotechnology 12 (4):650–61.
  • Fortunati, E., J. M. Kenny, and L. Torre. 2019. Lignocellulosic materials as reinforcements in sustainable packaging systems: Processing, properties, and applications. In Biomass, Biopolymer-Based Materials, and Bioenergy, ed. D. Verma, 87–102. Cambridge: Woodhead Publishing.
  • Gao, Q., X. Shen, and X. Lu. 2011. Regenerated bacterial cellulose fibers prepared by the NMMO· H2O process. Carbohydrate Polymers 83 (3):1253–56.
  • Gopi, S., P. Balakrishnan, V. G. Geethamma, A. Pius, and S. Thomas. 2018. Applications of cellulose nanofibrils in drug delivery. In Applications of Nanocomposite Materials in Drug Delivery, ed. D. I. A. Asiri and A. Mohammad, 75–95. Cambridge: Woodhead Publishing.
  • Gorgieva, S., and J. Trček. 2019. Bacterial cellulose: Production, modification, and perspectives in biomedical applications. Nanomaterials 9 (10):1352.
  • Gündüz, G., and N. Aşık. 2018. Production and Characterization of Bacterial Cellulose with Different Nutrient Source and Surface–Volume Ratios. Drvna Industrija: Znanstveni Casopis Za Pitanja Drvne Tehnologije 69 (2):141–48.
  • Gupta, P. K., S. S. Raghunath, D. V. Prasanna, P. Venkat, V. Shree, C. Chithananthan, and K. Geetha. 2019. An update on overview of cellulose, its structure, and applications. In Cellulose, ed. A. R. Pascual., 59-81. London: Intech Open.
  • Han, J., E. Shim, and H. R. Kim. 2019. Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Textile Research Journal 89 (6):1094–104.
  • Harmon, J., N. Thibault, and L. Fairbourn 2017. Durability Properties of Bacterial Cellulose for Textile Applications. Poster presented In International Textile and Apparel Association Annual Conference Proceedings St. Petersburg, Florida, USA, January 1.
  • Hussain, Z., W. Sajjad, T. Khan, and F. Wahid. 2019. Production of bacterial cellulose from industrial wastes: A review. Cellulose 26 (5):2895–911.
  • Ibrahim, N. A., B. M. Eid, E. Abd El-Aziz, T. M. Abou Elmaaty, and S. M. Ramadan. 2017. Multifunctional cellulose-containing fabrics using modified finishing formulations. RSC Advances 7 (53):33219–30.
  • Jabihulla, S., Md, S. Madhu, K., S. Chakravarthy, and S. N. Raju, J. 2020. Characterization of Natural Cellulose Fibers from the Stem of Albizia Julibrissin as Reinforcement for Polymer Composites. Journal of Natural Fibers 27: 1–14.
  • Jafari, R., N. S. Naghavi, K. Khosravi-Darani, M. Doudi, and K. Shahanipour. 2020. Kombucha microbial starter with enhanced production of antioxidant compounds and invertase. Biocatalysis and Agricultural Biotechnology 29:101789.
  • Jayabalan, R., R. V. Malbaša, E. S. Lončar, J. S. Vitas, and M. Sathishkumar. 2014. A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13 (4):538–50.
  • Jennifer, H., F. Logan, and T. Natalie. 2020. Exploring the Potential of Bacterial Cellulose for Use in Apparel. J Textile Sci & Fashion Tech 5 (2):1-9.
  • Kale, B. M., J. Wiener, J. Militky, S. Rwawiire, R. Mishra, and A. Jabbar. 2016a. Dyeing and stiffness characteristics of cellulose-coated cotton fabric. Cellulose 23 (1):981–92.
  • Kale, B. M., J. Wiener, J. Militky, S. Rwawiire, R. Mishra, K. I. Jacob, and Y. Wang. 2016b. Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. Carbohydrate Polymers 150:107–13.
  • Kamiński, K., M. Jarosz, J. Grudzień,J., Pawlik, J., Zastawnik, F., Pandyra, P., and Kołodziejczyk, A. M. 2020. Hydrogel bacterial cellulose: A path to improved materials for new eco-friendly textiles. Cellulose 27:5353–65.
  • Kapp, J. M., and W. Sumner. 2019. Kombucha: A systematic review of the empirical evidence of human health benefit. Annals of Epidemiology 30:66–70.
  • Klemm, D., B. Heublein, H. P. Fink, and A. Bohn. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44 (22):3358–93.
  • Łaskiewicz, B. 1998. Solubility of bacterial cellulose and its structural properties. Journal of Applied Polymer Science 67 (11):1871–76.
  • Lavanya, D. K. P. K., P. K. Kulkarni, M. Dixit, P. K. Raavi, and L. N. V. Krishna. 2011. Sources of cellulose and their applications-a review. International Journal of Drug Formulation and Research 2 (6):19–38.
  • Lee, Y. A., R. Li, and C. Nam 2016. Consumers’ Acceptance of Sustainable Apparel Products Made of Bacterial Cellulose Materials. Paper presented at The International Textile and Apparel Association Annual Conference Proceedings, Vancouver, British Columbia, Canada, November 8.
  • Lima, G. D. M., M. R. Sierakowski, P. Faria-Tischer, and C. A. Tischer 2009. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride. Paper presented at 10. Brazilian Congress on polymers, Sao Paulo, Brazil, October 13- 17.
  • Lustri, W. R., H. G. de Oliveira Barud, H. Barud, M. F. Peres, J. Gutierrez, A. Tercjak, and S. J. Lima Ribeiro. 2015. Microbial cellulose—biosynthesis mechanisms and medical applications. Cellulose-Fundamental Aspects and Current Trends 1:133–57.
  • Makarov, I. S., G. K. Shambilova, M. I. Vinogradov, P. V. Zatonskih, T. I. Gromovykh, S. V. Lutsenko, and V. G. Kulichikhin. 2020. Films of Bacterial Cellulose Prepared from Solutions in N-Methylmorpholine-N-Oxide: Structure and Properties. Processes 8 (2):171.
  • Mamun, M. A. A., M. T. Islam, M. M. Islam, K. Sowrov, M. A. Hossain, D. M. Ahmed, and H. Shahariar. 2020. Scalable Process to Develop Durable Conductive Cotton Fabric. Advanced Fiber Materials 2:291–301.
  • Meftahi, A., R. Khajavi, A. Rashidi, M. Sattari, M. E. Yazdanshenas, and M. Torabi. 2010. The effects of cotton gauze coating with microbial cellulose. Cellulose 17 (1):199–204.
  • Mishra, R. K., A. Sabu, and S. K. Tiwari. 2018. Materials chemistry and the futurist eco-friendly applications of nano-cellulose: Status and prospect. Journal of Saudi Chemical Society 22 (8):949–78.
  • Mizuno, M., Y. Kamiya, T. Katsuta, N. Oshima, K. Nozaki, and Y. Amano. 2012. Creation of Bacterial Cellulose-Fabric Complexed Material. Sen’i Gakkaishi 68 (2):42–47.
  • Mohammadkazemi, F., K. Doosthoseini, and M. Azin. 2015. Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734). Cellulose Chemistry and Technology 49 (5–6):455–62.
  • Nainggolan, H., S. Gea, E. Bilotti, T. Peijs, and S. D. Hutagalung. 2013. Mechanical and thermal properties of bacterial-cellulose-fiber-reinforced mater-bi® bionanocomposite. Beilstein Journal of Nanotechnology 4 (1):325–29.
  • Naomi, R., B. H. Idrus, R., and M. B. Fauzi. 2020. Plant-vs. Bacterial-Derived Cellulose for Wound Healing: A Review. International Journal of Environmental Research and Public Health 17 (18):6803.
  • Nazeri, M. A. 2012. Optimization of Bacterial Cellulose Production by Using Response Surface Methodology (RSM): Effect of PH, Temperature and Concentration of Fermentation Medium, PhD diss., Universiti Malaysia Pahang.
  • Nechyporchuk, O., J. Yu, V. A. Nierstrasz, and R. Bordes. 2017. Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in e-textile manufacturing. ACS Sustainable Chemistry & Engineering 5 (6):4793–801.
  • Ng. M., F., and P. W. Wang. 2016. Natural self-grown fashion from bacterial cellulose: A paradigm shift design approach in fashion creation. The Design Journal 19 (6):837–55.
  • Niyazbekova, Z. T., G. Z. Nagmetova, and A. A. Kurmanbayev. 2018. An Overview of Bacterial Cellulose Applications. Eurasian Journal of Applied Biotechnology 2:17–25.
  • Pandey, M. A. N. I. S., H. A. Abeer, M. M. Amin, M. C. I., and M. Cairul. 2014. Dissolution study of bacterial cellulose (nata de coco) from local food industry: Solubility behavior & structural changes. International Journal of Pharmacy and Pharmaceutical Sciences 6 (6):89–93.
  • Pogorelova, N., E. Rogachev, I. Digel, S. Chernigova, and D. Nardin. 2020. Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties. Materials 13 (12):2849.
  • Pulidindi, K., and H. Pandey, 2018. Carboxymethyl Cellulose (CMC) Market Size by Purity (Above 95%, 80%-95%, Below 80%), By End-user (Food & Beverage, Pharmaceuticals, Personal Care, Oil & Gas, Pulp & Paper, Detergents and Laundry), Industry Analysis Report, Regional Outlook, Application Growth Potential, Price Trends, Competitive Market Share and Forecast, 2016-2024. Accessed December13 2020. https://www.gminsights.com/industry-analysis/carboxymethyl-cellulose-cmc-market
  • Quijano, L. 2017. Embracing Bacterial Cellulose as a Catalyst for Sustainable Fashion. Senior Honors Theses, Liberty University.
  • Rangaswamy, B. E., K. P. Vanitha, and B. S. Hungund. 2015. Microbial cellulose production from bacteria isolated from rotten fruit. International Journal of Polymer Science 2015:280784.
  • Rathinamoorthy, R., and T. Kiruba. 2020. Bacterial cellulose-A potential material for sustainable eco-friendly fashion products. Journal of Natural Fibers 1–13.
  • Remington, C. Nanollose partners to scale microbial cellulose. Accessed December 2, 2020. https://www.ecotextile.com/2020013025613/materials-production-news/nanollose-partners-to-scale-microbial-cellulose-production.html
  • Sakwises, L., N. Rodthongkum, and S. Ummartyotin. 2017. SnO2-and bacterial-cellulose nanofiber-based composites as a novel platform for nickel-ion detection. Journal of Molecular Liquids 248:246–52.
  • Sayyed, A. J., N. A. Deshmukh, and D. V. Pinjari. 2019. A critical review of manufacturing processes used in regenerated cellulosic fibers: Viscose, cellulose acetate, cuprammonium, LiCl/ DMAc,ionic liquids, and NMMO based lyocell. Cellulose 26 (5):2913–40.
  • Shao, W., S. Wang, J. Wu, M. Huang, H. Liu, and H. Min. 2016. Synthesis and antimicrobial activity of copper nanoparticle-loaded regenerated bacterial cellulose membranes. RSC Advances 6 (70):65879–84.
  • Shen, X., Y. Ji, D. Wang, and Q. Yang. 2010. Solubility of a high molecular-weight bacterial cellulose in lithium chloride/N, N-dimethylacetamide solution. Journal of Macromolecular Science Part B 49 (5):1012–18.
  • Shim, E., and H. R. Kim. 2019. Coloration of bacterial cellulose using in situ and ex-situ methods. Textile Research Journal 89 (7):1297–310.
  • Song, J. E., A. Cavaco-Paulo, C. Silva, and H. R. Kim. 2020. Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Textile Research Journal 90 (2):166–78.
  • Song, J. E., C. Silva, A. M. Cavaco-Paulo, and H. R. Kim. 2019. Functionalization of bacterial cellulose nonwoven by poly (fluorophenol) to improve its hydrophobicity and durability. Frontiers in Bioengineering and Biotechnology 7:332.
  • Ul-Islam, M., S. Khan, M. W. Ullah, and J. K. Park. 2019. Comparative study of plant and bacterial cellulose pellicles regenerated from dissolved states. International Journal of Biological Macromolecules 137:247–52.
  • Uzun, M. 2012. Ultrasonik ve Klasik Yikama Yöntemlerinin Dokuma Kumaş Termal Özelliklerine Etkilerinin Incelenmesi. Journal of Textiles & Engineers/Tekstil Ve Mühendis 19:86.
  • Villarreal‐Soto, S. A., S. Beaufort, J. Bouajila, J. P. Souchard, and P. Taillandier. 2018. Understanding kombucha tea fermentation: A review. Journal of Food Science 83 (3):580–88.
  • Wang, J., J. Tavakoli, and Y. Tang. 2019. Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate Polymers 219:63–76.
  • Wang, S., F. Jiang, X. Xu, Y. Kuang, K. Fu, E. Hitz, and L. Hu. 2017. Super‐Strong, Super‐Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers. Advanced Materials 29 (35):1702498.
  • Wong, S. S., S. Kasapis, and Y. M. Tan. 2009. Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydrate Polymers 77 (2):280–87.
  • Wood, D., H. Liu, and C. J. Salusso 2015. Production and characterization of bacterial cellulose fabrics. In International Textile and Apparel Association Annual Conference Proceedings (Vol. 72, No. 1). Iowa State University Digital Press, Santa Fe, New Mexico,USA, November 11.
  • Wood, J. 2019. Bioinspiration in Fashion—A Review. Biomimetics 4 (1):16.
  • Wu, H. L., D. H. Bremner, H. J. Wang, J. Z. Wu, H. Y. Li, J. R. Wu, and L. M. Zhu. 2017. Fabrication and investigation of a biocompatible microfilament with high mechanical performance based on regenerated bacterial cellulose and bacterial cellulose. Materials Science and Engineering: C 79:516–24.
  • Xu, Q., L. Fan, Y. Yuan, C. Wei, Z. Bai, and J. Xu. 2016. All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23 (6):3987–97.
  • Zeng, M. 2014. Bacterial cellulose: Fabrication, characterization, and biocompatibility studies. Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Zhang, Y. R., J. T. Chen, B. Hao, R. Wang, and P. C. Ma. 2020. Preparation of cellulose-coated cotton fabric and its application for the separation of emulsified oil in water. Carbohydrate Polymers 240:116318.
  • Zhong, Z., Z. Liao, and L. Lu. 2016. The influence of LiCl/DMAc microdissolution treatment on tensile property of hemp/cotton blended yarn. Journal of Natural Fibers 13 (5):578–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.