101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Natural Crosslinker on the Properties of Chicken Feather and Modified Vegetable Oil Based Green Composites

, &

References

  • Adekunle, K., D. Åkesson, and M. Skrifvars. 2010. Synthesis of reactive soybean oils for use as a biobased thermoset resins in structural natural fiber composites. Journal of Applied Polymer Science 115 (6):3137–45. doi:10.1002/app.31411.
  • Arunkumar, C., H. S. Megwal, S. P. Borkar, and A. L. Bhongade. 2013. Recycling of Chicken Feather and Wool Fiber Waste into Reinforced Multilayer Composite - A Review. Journal of the Textile Association 73 (6):371–78.
  • Asim, M., M. T. Paridah, M. Chandrasekar, R. M. Shahroze, M. Jawaid, M. Nasir, and R. Siakeng. 2020. Thermal stability of natural fibers and their polymer composites. Iranian Polymer Journal 29 (7):625–48. doi:10.1007/s13726-020-00824-6.
  • Atta, A. M., R. Mansour, M. I. Abdou, and A. M. Sayed. 2004. Epoxy Resins from Rosin Acids: Synthesis and Characterization. Polymers for Advanced Technologies 15 (9):514–22. doi:10.1002/pat.507.
  • Bahtiyari, M. I., H. Benli, and P. Nazım. 2020. Dyeing of Chicken Feather Fibers with Natural Dyes. Journal of Natural Fibers 17 (7):945–53. doi:10.1080/15440478.2018.1541772.
  • Bansal, G., and V. K. Singh. 2016. Review on chicken feather fiber (CFF) a livestock waste in composite material development. International Journal of Waste Resources 6:2. doi:10.4172/2252-5211.1000254.
  • Becquart, F., M. Taha, A. Zerroukhi, J. Kaczun, and U. Stebani. 2004. Functionalization of a Poly(Vinyl Alcohol) in the Solid State with a Swelling Agent by Methacrylic Anhydride. Journal of Polymer Science. Part A, Polymer Chemistry 42 (7):1618–29. doi:10.1002/pola.10943.
  • Bharath, K. N., M. Pasha, and B. A. Nizamuddin. 2016. Characterization of natural fibers (sheep wool)-reinforced polymer-matrix composites at different operating conditions. Journal of Industrial Textiles 45 (5):730–51. doi:10.1177/1528083714540698.
  • Bledzki, A. K., and J. Gassan. 1999. Composites-Reinforced-with-Cellulose-Based-Fibers. Progress in Polymer Science 24 (2):221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Can, E., R. P. Wool, and S. Ku. 2006. Soybean- and Castor-Oil-Based Thermosetting Polymers : Mechanical Properties. Journal of Applied Polymer Science 102 (2):1497–504. doi:10.1002/app.24423.
  • Cañavate, J., J. Aymerich, N. Garrido, X. Colom, J. Macanás, G. Molins, M. D. Álvarez, and F. Carrillo. 2016. Properties and optimal manufacturing conditions of chicken feathers/poly(lactic acid) biocomposites. Journal of Composite Materials 50 (12):1671–83. doi:10.1177/0021998315595534.
  • Cheung, H. Y., M. P. Ho, K. T. Lau, F. Cardona, and D. Hui2009Natural fiber-reinforced composites for bioengineering and environmental engineering applicationsComposites Part B: Engineering 40 (7):655–63. doi:10.1016/j.compositesb.2009.04.014.
  • Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain. 2012. Biocomposites Reinforced with Natural Fibers: 2000-2010. Progress in Polymer Science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Gayatri, U., G. Srinivasarao, and M. Ramakrishna. 2020. Mechanical and thermal characterization of chicken raches/sawdust reinforced hdpe hybrid composites. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) 10:327–44.
  • Habib, F., and M. Bajpai. 2011. Synthesis and Characterization of Acrylated Epoxidized Soybean Oil for Uv Cured Coatings. Chemistry and Chemical Technology 5 (3):317–26. doi:10.23939/chcht05.03.317.
  • Hernandez, S., and E. Vigueras. 2013. Acrylated-Epoxidized Soybean Oil-Based Polymers and Their Use in the Generation of Electrically Conductive Polymer Composites. Soybean - Bio-Active Compounds. doi:10.5772/52992.
  • Hong, C. K., and R. F. Wool. 2005. Development of a Bio-Based Composite Material from Soybean Oil and Keratin Fibers. Journal of Applied Polymer Science 95 (6):1524–38. doi:10.1002/app.21044.
  • Kim, J. R., and S. Sharma. 2012. The development and comparison of bio-thermoset plastics from epoxidized plant oils. Industrial Crops and Products 36 (1):485–99. doi:10.1016/j.indcrop.2011.10.036.
  • Lin, R., H. Li, H. Long, J. Su, and W. Huang. 2014. Synthesis of Rosin Acid Starch Catalyzed by Lipase. BioMed Research International 2014. doi:10.1155/2014/647068.
  • Liu, X., W. Xin, and J. Zhang. 2009. Rosin-Based Acid Anhydrides as Alternatives to Petrochemical Curing Agents. Green Chemistry 11 (7):1018–25. doi:10.1039/b903955d.
  • Liu, X., W. Xin, and J. Zhang. 2010Rosin-derived imide-diacids as epoxy curing agents for enhanced performance.Bioresource Technology 101 (7):2520–24. doi:10.1016/j.biortech.2009.11.028.
  • Lu, Y., and R. C. Larock. 2006. Novel Biobased Nanocomposites from Soybean Oil and Functionalized Organoclay. Biomacromolecules 7 (9):2692–700. doi:10.1021/bm060458e.
  • Ma, Q., X. Liu, R. Zhang, J. Zhu, and Y. Jiang. 2013. Synthesis and Properties of Full Bio-Based Thermosetting Resins from Rosin Acid and Soybean Oil: The Role of Rosin Acid Derivatives. Green Chemistry 15 (5):1300–10. doi:10.1039/c3gc00095h.
  • Manaila, E., M. D. Stelescu, and F. Doroftei. 2015. Polymeric composites based on natural rubber and hemp fibers. Iranian Polymer Journal 24 (2):135–148.`. doi:10.1007/s13726-015-0307-6.
  • Mandal, M., P. Borgohain, P. Begum, R. C. Deka, and T. K. Maji. 2018. Property enhancement and DFT study of wood polymer composites using rosin derivatives as co-monomers. New Journal of Chemistry 42 (3):2260–69. doi:10.1039/C7NJ03825A.
  • Manral, A. R. S., G. Narendra, B. Gagan, H. P. Singh, and P. Negi. 2020. Structural and modal analysis of chicken feather fiber (CFF) with epoxy-resin matrix composite material. Materials Today: Proceedings 26:2558–63. doi:10.1016/j.matpr.2020.02.542.
  • Mendoza, R. C., J. O. Grande, and M. N. Acda. 2019. Effect of Keratin Fibers on Setting and Hydration Characteristics of Portland Cement. Journal of Natural Fibers 1–8. doi:10.1080/15440478.2019.1701604.
  • Mustata, F. R., and N. Tudorachi. 2010. Epoxy Resins Cross-Linked with Rosin Adduct Derivatives. Cross-Linking and Thermal Behaviors. Industrial & Engineering Chemistry Research 49 (24):12414–22. doi:10.1021/ie101746v.
  • Nalawade, P. P., B. Mehta, C. Pugh, and M. D. Soucek. 2014. Modified Soybean Oil as a Reactive Diluent: Synthesis and Characterization. Journal of Polymer Science. Part A, Polymer Chemistry 52 (21):3045–59. doi:10.1002/pola.27352.
  • Oladele, I. O., J. A. Omotoyinbo, and S. H. Ayemidejor. 2014. Mechanical properties of chicken feather and cow hair fiber reinforced high density polyethylene composites. International Journal of Science and Technology 3 (1):66–72.
  • Rajkumar, G., J. Srinivasan, and L. Suvitha. 2013. Development of novel silk/wool hybrid fiber polypropylene composites. Iranian Polymer Journal 22 (4):277–84. doi:10.1007/s13726-013-0128-4.
  • Ramamoorthy, S. K., M. Skrifvars, and A. Persson. 2015. A Review of Natural Fibers Used in Biocomposites : Plant, Animal and Regenerated Cellulose Fibers. Polymer Reviews 55 (1):107–62. doi:10.1080/15583724.2014.971124.
  • Reddy, N., and Y. Yang. 2007. Structure and properties of chicken feather barbs as natural protein fibers. Journal of Polymers and the Environment 15 (2):81–87. doi:10.1007/s10924-007-0054-7.
  • Salehuddin, S. M. F., M. U. Wahit, M. R. A. Kadir, E. Sulaiman, and N. H. A. Kasim. 2014. Mechanical and morphology properties of feather fiber composite for dental post application. The Malaysian Journal of Analytical Sciences 18 (2):368–37.
  • Saravanan, K., and C. Prakash. 2019. Study of Acoustic Properties of Chicken Feather Fiber (CFF) and Its Hybrid Composites. Journal of Natural Fibers 1–8. doi:10.1080/15440478.2019.1629560.
  • Saravanan, K., and C. Prakash. 2020. Effect of processing conditions on flexural strength properties of chicken feather fiber (CFF) and its hybrid composites with polypropylene resin. Journal of Natural Fibers 17 (7):933–44. doi:10.1080/15440478.2018.1539941.
  • Scala, J. L., and R. P. Wool. 2005. Property Analysis of Triglyceride-Based Thermosets. Polymer 46(1):61–69. doi:10.1016/j.polymer.2004.11.002.
  • Senoz, E., J. F. Stanzione, K. H. Reno, R. P. Wool, and M. E. Miller. 2013. Pyrolyzed Chicken Feather Fibers for Biobased Composite Reinforcement. Journal of Applied Polymer Science 128 (2):983–89. doi:10.1002/app.38163.
  • Vijayan, P. P., A. A. Bhanu, S. R. Archana, A. Babu, S. Siengchin, and J. Parameswaranpillai. 2020. Development of chicken feather fiber filled epoxy protective coating for metals. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.05.229.
  • Wang, H., X. Liu, B. Liu, J. Zhang, and M. Xian. 2009. Synthesis of Rosin-Based Flexible Anhydride-Type Curing Agents and Properties of the Cured Epoxy. Polymer International 58 (12):1435–41. doi:10.1002/pi.2680.
  • Wilbon, P. A., F. Chu, and C. Tang. 2013. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromolecular Rapid Communications 34 (1):8–37. doi:10.1002/marc.201200513.
  • Williams, G. I. 2000. Composites from Natural Fibers and Soy Oil Resins. Applied Composite Materials 7 (5):421–32. doi:10.1023/A:1026583404899.
  • Yu, M., P. Wu, R. B. Widelitz, and C. M. Chuong. 2002. The morphogenesis of feathers. Nature 420 (6913):308–12. doi:10.1038/nature01196.
  • Zhang, H., Y. Guo, J. Yao, and M. He. 2016. Epoxidised Soybean Oil Polymer Composites Reinforced with Modified Microcrystalline Cellulose. Journal of Experimental Nanoscience 11 (15):1213–26. doi:10.1080/17458080.2016.1209584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.