672
Views
48
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Mechanical and Thermal Properties of Jute and Ramie Reinforced Epoxy-based Hybrid Composites

, , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abou-Zeid, R. E., N. A. El-Wakil, and Y. Fahmy. 2015. Thermoplastic composites from natural reed fibers. Egyptian Journal of Chemistry 58 (3):287–98.
  • Ashik, K. P., and R. S. Sharma. 2015. A review on mechanical properties of natural fiber reinforced hybrid polymer composites. Journal of Minerals and Materials Characterization and Engineering 03 (05):420–26. doi:10.4236/jmmce.2015.35044.
  • Girones, J., L. T. T. Vo, J.-M. Haudin, L. Freire, and P. Navard. 2017. Crystallization of Polypropylene in the presence of biomass-based fillers of different compositions. Polymer 127:220–31. doi:10.1016/j.polymer.2017.09.006.
  • Gu, J., X. Yang, Z. Lv, N. Li, C. Liang, and Q. Zhang. 2016. Functionalized graphite nanoplatelets/Epoxy Resin nanocomposites with high thermal conductivity. International Journal of Heat and Mass Transfer 92:15–22. doi:10.1016/j.ijheatmasstransfer.2015.08.081.
  • Hristozov, D., L. Wroblewski, and P. Sadeghian. 2016. Long-term tensile properties of natural fibre-reinforced polymer composites: comparison of flax and glass fibres. Composites Part B: Engineering 95:82–95. doi:10.1016/j.compositesb.2016.03.079.
  • Huang, J.-K., and W.-B. Young. 2019. The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engineering 166:272–83. doi:10.1016/j.compositesb.2018.12.013.
  • Huo, S., A. Thapa, and C. A. Ulven. 2013. Effect of surface treatments on interfacial properties of flax fiber-reinforced composites. Advanced Composite Materials 22 (2):109–21. doi:10.1080/09243046.2013.777996.
  • Kadla, J. F., S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith. 2002. Lignin-based carbon fibers for composite fiber applications. Carbon 40 (15):2913–20. doi:10.1016/S0008-6223(02)00248-8.
  • Kim, N. K., S. Dutta, and D. Bhattacharyya. 2018. A review of flammability of natural fibre reinforced polymeric composites. Composites Science and Technology 162:64–78. doi:10.1016/j.compscitech.2018.04.016.
  • Kumar, S., L. Prasad, V. K. Patel, V. Kumar, A. Kumar, A. Yadav, and J. Winczek. 2021. Physical and mechanical properties of natural leaf fiber-reinforced Epoxy Polyester composites. Polymers 13 (9):1369. (April). doi:10.3390/polym13091369.
  • Li, S., L. Jiang, H. Zhang, Z. Li, and X. Wang. 2009. Recycling of lignin: A new methodology for production of water reducing agent with paper mill sludge. Appita Journal 62 (5):379–82.
  • Mehar, K., S. K. Panda, and T. R. Mahapatra. 2017. Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method. Scientia Iranica 0 (0):0. doi:10.24200/sci.2017.4525.
  • Mohammed, L., M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam. 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science 2015:1–15. doi:10.1155/2015/243947.
  • Nguyen, T., E. Zavarin, and E. M. Barrall. 1981. Thermal analysis of lignocellulosic materials. Journal of Macromolecular Science, Part C 20(1): (January 3), 1–65. http://www.tandfonline.com/doi/abs/10.1080/00222358108080014. doi:10.1080/00222358108080014.
  • Pereira, A. L., M. D. Banea, J. S. S. Neto, and D. K. K. Cavalcanti. 2020. Mechanical and Thermal Characterization of Natural Intralaminar Hybrid Composites Based on Sisal. Polymers 12 (4):866. (April). doi:10.3306/polym12040866.
  • Prasad, L., G. Singh, A. Yadav, V. Kumar, and A. Kumar. 2019. Properties of functionally gradient composites reinforced with waste natural fillers. Acta Periodica Technologica 50 (50):250–59. doi:10.2298/APT1950250P
  • Prasad, L., S. Kumar, R. V. Patel, A. Yadav, V. Kumar, and J. Winczek. 2020. Physical and mechanical behaviour of sugarcane bagasse fibre-reinforced Epoxy bio-composites. Materials 13 (23):5387. (November). doi:10.3390/ma13235387.
  • Prasad, L., V. Singh, R. V. Patel, A. Yadav, V. Kumar, and J. Winczek. 2021a. Physical and mechanical properties of rambans (agave) fiber reinforced with polyester composite materials. Journal of Natural Fibers 1–15. doi:10.1080/15440478.2021.1904481.
  • Prasad, L., A. Kumain, R. V. Patel, A. Yadav, and J. Winczek. 2021b. Physical and Mechanical Behavior of Hemp and Nettle Fiber-Reinforced Polyester Resin-based Hybrid Composites. Journal of Natural Fibers 1–16. doi:10.1080/15440478.2020.1821284.
  • Puglia, D., F. Luzi, M. Lilli, F. Sbardella, M. Pauselli, L. Torre, and P. Benincasa. 2020. Straw fibres from barley hybrid lines and their reinforcement effect in Polypropylene based composites. Industrial Crops and Products 154:112736. doi:10.1016/j.indcrop.2020.112736.
  • Pupin, C., A. Ross, C. Dubois, J.-C. Rietsch, and E. Ruiz. 2017. Predicting porosity formation in phenolic resins for RTM manufacturing: the porosity map. Composites. Part A, Applied Science and Manufacturing 100:294–304. doi:10.1016/j.compositesa.2017.05.023.
  • Raja, T., and P. Anand. 2019. Evaluation of thermal stability and thermal properties of neem/banyan reinforced hybrid polymer composite. Materials Performance and Characterization 8 (1):20190135. doi:10.1520/MPC20190135.
  • Rajak, D., D. Pagar, P. Menezes, and E. Linul. 2019. Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers 11 (10):1667. (October). doi:10.3390/polym11101667.
  • Ramanaiah, K., A. V. Ratna Prasad, and K. Hema Chandra Reddy. 2012. Thermal and mechanical properties of waste grass broom fiber-reinforced Polyester composites. Materials & Design 40:103–08. doi:10.1016/j.matdes.2012.03.034.
  • Ramesh, M., C. Deepa, U. S. Aswin, H. Eashwar, B. Mahadevan, and D. Murugan. 2016. Effect of Alkalization on mechanical and moisture absorption properties of Azadirachta Indica (neem tree) fiber reinforced green composites. Transactions of the Indian Institute of Metals 70 (1):187–99. doi:10.1007/s12666-016-0874-z.
  • Ramesh, M., K. Palanikumar, and K. H. Reddy. 2017. Plant fibre based bio-composites: sustainable and renewable green materials. Renewable and Sustainable Energy Reviews 79 (November):558–84. doi:10.1016/j.rser.2017.05.094.
  • Reddy, B. M., Y. V. Mohana Reddy, B. C. Mohan Reddy, and R. M. Reddy. 2018. Mechanical, morphological, and thermogravimetric analysis of Alkali-Treated Cordia-Dichotoma natural fiber composites. Journal of Natural Fibers 17 (5):759–68. doi:10.1080/15440478.2018.1534183.
  • Saba, N., M. T. Paridah, and M. Jawaid. 2015. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials 76:87–96. doi:10.1016/j.conbuildmat.2014.11.043.
  • Senturk, O., A. E. Senturk, and M. Palabiyik. 2018. Evaluation of hybrid effect on the thermomechanical and mechanical properties of Calcite/SGF/PP hybrid composites. Composites Part B: Engineering 140:68–77. doi:10.1016/j.compositesb.2017.12.021.
  • Singh, C. P., R. V. Patel, M. F. Hasan, A. Yadav, V. Kumar, and A. Kumar. 2021. Fabrication and evaluation of physical and mechanical properties of jute and coconut coir reinforced polymer matrix composite. Materials Today: Proceedings 38:2572–77.
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2014. Review: raw natural fiber–based polymer composites. International Journal of Polymer Analysis and Characterization 19 (3):256–71. doi:10.1080/1023666X.2014.880016.
  • Thandavamoorthy, R., and A. Palanivel. 2019. Testing and evaluation of tensile and impact strength of neem/banyan fiber-reinforced hybrid composite. Journal of Testing and Evaluation 48 (1):20180640. doi:10.1520/JTE20180640.
  • Vijaya Ramnath, B., S. Junaid Kokan, R. Niranjan Raja, R. Sathyanarayanan, C. Elanchezhian, A. Rajendra Prasad, and V. M. Manickavasagam. 2013. Evaluation of mechanical properties of abaca–jute–glass fibre reinforced Epoxy composite. Materials & Design 51:357–66. doi:10.1016/j.matdes.2013.03.102.
  • Wu, Y., C. Xia, L. Cai, A. C. Garcia, and S. Q. Shi. 2018. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production 184 (May):92–100. doi:10.1016/j.jclepro.2018.02.257.
  • Zhou, X., D. Liu, H. Bu, L. Deng, H. Liu, P. Yuan, P. Du, and H. Song. 2018. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences 3 (1):16–29. doi:10.1016/j.sesci.2017.12.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.