108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the Physical, Mechanical and Chemical Properties of the Marrow of Raffia Hookeri

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • 0123458697().,-volV)
  • Alausa, S. K., O. O. Oyesiku, J. O. Aderibigbe, and O. S. Akinola. 2011. Thermal properties of Calamus deërratus, Raffia hookeri and synthetic board in building design in Southwestern Nigeria. African Journal of Plant Science 5 (4):281–83. doi:10.5897/AJPS.9000252.
  • Angellier, N., F. Dubois, R. M. Pitti, M. Diakhaté, and R. S. A. Loko. 2017. Influence of hygrothermal effects in the fracture process in wood under creep loading. Engineering Fracture Mechanics 177:153–66. doi:10.1016/j.engfracmech.2017.04.009.
  • Asyraf, M. R. M., M. R. Ishak, S. M. Sapuan, N. Yidris, and R. A. Ilyas. 2020. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. Journal of Materials Research and Technology 9:6759–76. doi:10.1016/j.jmrt.2020.01.013.
  • Augeard, E. Expérimentation et modélisation du comportement mécanique de structures multi-matériaux bois-béton, PHD, Université de Lyon, 2018. Français. 〈NNT: 2018LYSE1167〉
  • Avat, F. 1993. Contribution à l’étude des traitements thermiques du bois jusqu’à 300°C: Transformations chimiques et caractérisations physico-chimiques. phD diss., Ecole Nationale Supérieure des Mines de Saint-Etienne.
  • Azmami, O., L. Sajid, A. Boukhriss, S. Majid, Z. E. Ahmadi, A. Benayada, and S. Gmouh. 2021. Mechanical and aging performances of Palm/ Wool and Palm/ Polyester nonwovens coated by waterborne polyurethane for automotive interiors. Industrial Crops and Products 170:113681. doi:10.1016/j.indcrop.2021.113681.
  • Beckley, V. N., F.-T. Josepha, P. E. Ekane, and W. M. K. Rui. 2018. Potential of blended biomass feedstock from some species of raffia palm (Raffia farinifera, Raffia hookeri and Raffia vinifera) and Oil Palm Empty Fruit Bunch (OPEFB) from Cameroon. African Journal of Pure and Applied Chemistry 2 (4):25–33. doi:10.5897/AJPAC2018.0753.
  • Beckley, V. N., P. E. Ekane, F.-T. Josepha, C. Y. Fomogne, V. N. Mih, and W. Nzegge. 2019. Extraction and Physicochemical Characterization of Lignin from Cameroon’s Three Raffia Palm Species (Raffia Farinifera, Raffia Hookeri and Raffia Vinifera) and Africa Oil Palm (OPEFB). Journal of Materials Sciences and Applications 5 (2):18–28. http://www.aascit.org/journal/jmsa.
  • Biagiotti, J., D. Puglia, L. Torre, J. M. Kenny, A. Arbelaiz, G. Cantero, C. Marieta, R. Liano-Ponte, and I. Mondragon. 2004. A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polymer Composites 25:1051–62. doi:10.1002/pc.20040.
  • Binoj, J. S., R. E. Raj, V. S. Sreenivasan, and G. R. Thusnavis. 2016. Morphological, Physical, Mechanical, Chemical and Thermal characterization of sustainable Indian areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering 13:156–65. doi:10.1016/S1672-6529(14)60170-0.
  • Boopathi, L., P. S. Sampath, and K. Mylsamy. 2012. Investigation of physical, chemical and mechanical properties of raw and alkali treated borassus fruit fiber. Composites: Part B 43:3044–52. doi:10.1016/j.compositesb.2012.05.002.
  • Brito, T. B., J. F. Carrajola, E. C. B. A. Gonçalves, and M. Martelli-Tosi. 2019. Ferreira MSL Fruit and vegetable residues flours with different granulometry range as raw material for pectin-enriched biodegradable film preparation. Food Research International 121:412–21. doi:10.1016/j.foodres.2019.03.058.
  • Echegaray, N., M. Pateiro, B. Gullón, R. Amarowicz, J. M. Misihairabgwi, and J. M. Lorenzo. 2020. Phoenix dactylifera products in human health – A review. Trends in Food Science & Technology 105:238–50. doi:10.1016/j.tifs.2020.09.017.
  • Elenga, R. G., G. Tsiba, J. G. Maniongui, J. M. Ouamba, and J. M. Bessière. 2011b. Effects of drying methods on the drying kinetics and the essential oil of “Lippia multiflora” moldenke leaves. Research Journal of Applied Sciences, Engineering and Technology 3 (10):1135–41. www.researchgate.net/publication/286952331_Effects_of_Drying_Methods_on_the_Drying_Kinetics_and_the_Essential_Oil_of_Lippia_multiflora_Moldenke_Leaves.
  • Elenga, R. G., G. F. Dirras, J. G. Maniongui, and B. Mabiala. 2011a. Thin-layer drying of raffia textilis fiber. BioResources 6 (4):4135–44. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_4_4135_Elenga_DGMM_Thin_Layer_Drying_Raffia_Fiber/1163.
  • Elenga, R. G., G. F. Dirras, J. G. Maniongui, P. Djemia, and M. P. Biget. 2009. On the microstructure and physical properties of untreated raffia textilis fiber. Composites Part A. doi:10.1016/j.compositesa.2009.01.001.
  • Elenga, R. G., P. Djemia, D. Tingaud, T. Chauveau, J. G. Maniongui, and G. F. Dirras. 2013. Effects of alkali treatment on the microstructure, composition, and properties of the Raffia textilis fiber. BioResources 8 (2):2934–49. https://bioresources.cnr.ncsu.edu/resources/effects-of-alkali-treatment-on-the-microstructure-composition-and-properties-of-the-raffia-textilis-fiber/.
  • Engel, J. B., A. Ambrosi, and I. C. Tessaro. 2019. Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydrate Polymers 225.115234. doi:10.1016/j.carbpol.2019.115234.
  • Etuk, S. E., L. E. Akpabioand, and K. E. Akpabio. 2003. Investigation of raffia trunk as a potential ceiling material for passively cooled building design. Ghana J. Sci 43:3–7. doi:10.4314/gjs.v43i1.15894.
  • Faruk, O., and M. Sain. 2013. Continuous E.xtrusion Foaming of Lignin Enhanced Thermoplastic Polyurethane (TPU). Journal of Biobased Materials and Bioenergy 7:309–14. doi:10.1166/jbmb.2013.1365.
  • François, M.L.M., B. Semin, H. Auradou. 2010. Identification of the Shape of Curvilinear Beams and Fibers. Applied Mechanics and Materials. vol. 24–25: 359–364. https://doi.org/10.4028/www.scientific.net/amm.24–25
  • Fujimoto, T. 2021. Evaluation of stress relaxation process of wood based on the eigenvalue distribution of near infrared spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 248:119197
  • Gérard, J., A. E. Kouassi, C. Daigremont, P. Detienne, D. Fouquet, and M. Vernay. 1998. Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains. Cirad - Agritrop (https://agritrop.cirad.fr/515643/).
  • Hild, F., and S. Roux. 2006. Digital image correlation: From displacement measurement to identification of elastic properties - A review. Strain, Wiley-Blackwell 42 (2):69–80. doi:10.1111/j.1475-1305.2006.00258.x.
  • Huč, Sabina, T. Hozjan, and S. Svensson. 2018. Rheological behavior of wood in stress relaxation under compression. Wood Sci Technol 52:793–808. doi:10.1007/s00226-018-0993-2.
  • Issa, S. B., D. T. Ksiksi, and N. Saleous. 2020. Allometric equations coupled with remotely sensed variables to estimate carbon stocks in date palms. Journal of Arid Environments 182:104264. doi:10.1016/j.jaridenv.2020.104264.
  • Johnson, D. V. 2010. Non-wood forest products 10/Rev.1. Tropical Palms. http://www.fao.org/3/i1590e/i1590e00.htm.
  • Jones, E. M. C., and M. A. Iadicola. 2018. A Good Practices Guide for Digital Image Correlation. International Digital Image Correlation Society. Computer Science. doi:10.32720/IDICS/GPG.ED1.
  • Lara-Bocanegra, A. J., A. Majano-Majano, F. Arriaga, and M. Guaita. 2018. Long term bending stress relaxation in timber laths for the structural design of lattice shells. Construction and Building Materials 193:565–75. doi:10.1016/j.conbuildmat.2018.10.224.
  • Li, X. Q., X. M. Wang, and J. F. Yu. 2012. Research on tensile stress relaxation characteristics of Pinus sylvestris. Mater Sci Forum 704–705:480–85.
  • Nganya, T. 2000. Intérêt de l’utilisation d’isolants locaux dans l’habitat au Cameroun. Editions universitaires européennes.
  • Njeugna, E., N. R. T. Sikame, J. Y. Drean, D. Fokwa, and O. Harzallah. 2012. Mechanical characterization of raffia fibres from Raffia vinifera. International Journal of Mechanics Structural 3 (1):1–17.
  • Özparpucu, M., N. Gierlinger, I. Cesarino, I. Burgert, W. Boerjan, and M. Rüggeberg. 2019. Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions. Journal of Experimental Botany 70 (15):4039–47. doi:10.1093/jxb/erz180.
  • Panchal, T. M., A. Patel, D. D. Chauhan, M. Thomas, and J. V. Patel. 2017. A methodological review on bio-lubricants from vegetable oil based resources. Renewable and Sustainable Energy Reviews 70:65–70. doi:10.1016/j.rser.2016.11.105.
  • Pyykkö, M. 1985. Anatomy of the stem and petiole of Raffia hookeri (Palmae). Ann. Bot. Fennici 22 (2):129–38. www.jstor.org/stable/23725317?seq=1#metadata_info_tab_contents.
  • Qilan, F. 2019. Comportement physique, chimique et mécanique du bois suite à la compression sous l’effet de la chaleur et de l’humidité. phD diss., Université du Québec.
  • Reddy, N., and Y. Yang. 2005. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46 (15):5494–500. doi:10.1016/j.polymer.2005.04.073
  • Reddy, N., and K. Priya Dasan. 2013. Chemical treatments of coir pith: Morphology, chemical composition, thermal & water retention behavior. Composites: Part B 56:770–7910.1016/j.compositesb.2013.09.028
  • Réthoré, J. 2010. A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int. J. Num 84:631–60.
  • Schmier, S., M. Jentzsch, T. Speck, and M. Thielen. 2020. Fracture mechanics of the endocarp of Cocos nucifera. Materials & Design 195:108944. doi:10.1016/j.matdes.2020.108944.
  • Shawkataly, A. K., and R. H. Din. 2006. Gentian dan komposit Lignoselulosik. Pulau Pinang: Penerbit Universiti Sains Malaysia.
  • Sikame, T. N. R., E. Njeugna, D. Ndapeu, D. Fokwa, F. Médard, J. Y. Drean, and H. Omar. 2017. Investigation of the Physical and Mechanical Properties of Raffia Vinifera Fibers along the Stem. Journal of Natural Fiber 14 (5):621–33. doi:10.1080/15440478.2016.1250025.
  • Sikame, T. N. R., E. Njeugna, M. Fogue, J. Y. Drean, A. Nzeukou, and D. Fokwa. 2014. Study of water absorption in Raffia vinifera fibres from bandjoun, Cameroon. The Scientific World Journal 912380. doi:10.1155/2014/912380.
  • Sikame, T. N. R., E. Njeugna, M. Fogue, J. Y. Drean, and D. Fokwa. 2013. Study of water diffusion through Raffia Vinifera fibres of the stem from Bandjoun-Cameroon: Case of drying kinetics. Research Journal of Applied Sciences. Engineering and Technology 6 (19):3547–58. doi:10.19026/rjaset.6.3559.
  • Sikame, T. N. R., N. R., T. E. Mbou, O. Harzallah, D. Ndapeu, W. Huisken, D. Nkemaja, E. Njeugna, M. Fogue, and J.-Y. Drean. 2020. Physicochemical and Mechanica Characterization of Raffia vinifera Pith. Advances in Materials Science and Engineering. Article ID 8895913, 10 pages.10.1155/2020/8895913.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Micro structural and physico-chemical and mechanical characterization of sansevieria cylindrica fibersan exploratory investigation. Materials and Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Sugiyama, J., J. Persson, and H. Chanzy. 1991. Combined infrared and electron diffraction study of the polymorphism of celluloses. Macromolecules 24:2461–66.
  • Talla, P. K., A. Fomethe, M. Fogue, A. Foudjet, and G. N. Bawe. 2010. Time-temperature equivalency of Raffia Vinifera L. (Arecaceae) under compression. International Journal of Mechanics & Solids 5 (1):27–33.
  • Talla, P. K., A. Foudjet, and M. Fogue. 2005. Statistical model of strength in flexion and size effect on the failure of Raffia vinifera L. (Arecacea). Journal of Bamboo and Rattan 4 (4):335–42.
  • Talla, P. K., F. B. Pelap, M. Fogue, A. Fomethe, G. N. Bawe, E. Foadieng, and M. H. Kadivar. 2007. Nonlinear creep behavior of Raffia vinifera L. (Arecacea). International Journal of Mechanics and Solids 2 (1):1–11.
  • Talla, P. K., J. R. Tangka, and A. Foudjet. 2004. Statistical model of strength in compression of Raffia vinifera. Journal of Bamboo and Rattan 3 (3):229–35. doi:10.1163/1569159041765290.
  • Usmani, M. A., I. Khan, A. Haque, A. H. Bhat, D. Mondal, and U. Gazal. 2017. Biomass-based composites from different sources: Properties, characterization, and transforming biomass with ionic liquids. Lignocellulosic Fibre and Biomass-Based Composite Materials. doi:10.1016/B978-0-08-100959-8.00004-4.
  • Yu, L., J. Cao, and G. Zhao. 2010. Tensile stress relaxation of wood impregnated with different ACQ formulations at various temperatures. Holzforschung 64:111–17. doi:10.1515/hf.2010.012.
  • Zhbankov, R. G., S. P. Firsov, D. K. Buslov, N. A. Nikonenko, M. K. Machewka, and H. Ratajczak. 2002. Structural physico-chemistry of cellulose macro molecules. Vibrational spectra and structures of cellulose. Journal of Molecular Structure 614 (1–3):117–25. doi:10.1016/S0022-2000000000000860(02)00252-1.
  • Zon, A. O., E. K. Kouassi, and A. Ouédraogo. 2021. Current knowledge and future directions on West African wild palms: An analytical review for its conservation and domestication in the context of climate change and human pressures. Genetic Resources and Crop Evolution 68:1731–45. doi:10.1007/s10722-021-01158-9(0123456789.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.