698
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Bio-based Phytic Acid/chitosan and Polycarboxylic Acid for Eco-friendly Flame Retardant and Anti-crease of Cotton Fabric

, , &

References

  • Abd El-Hady, M. M., A. Farouk, and S. Sharaf. 2013. Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydrate Polymers 92 (1):400–06. doi:10.1016/j.carbpol.2012.08.085.
  • Alongi, J., F. Cuttica, S. Bourbigot, and G. Malucelli. 2015. Thermal and flame retardant properties of ethylene vinyl acetate copolymers containing deoxyribose nucleic acid or ammonium polyphosphate. Journal of Thermal Analysis and Calorimetry 122 (2):705–15. doi:10.1007/s10973-015-4808-5.
  • Basak, S., and S. W. Ali. 2017. Leveraging flame retardant efficacy of pomegranate rind extract, a novel biomolecule, on ligno-cellulosic materials. Polymer Degradation and Stability 144:83–92. doi:10.1016/j.polymdegradstab.2017.07.025.
  • Basak, S., K. K. Samanta, S. Saxena, S. K. Chattopadhyay, R. Narkar, R. Mahangade, and G. B. Hadge. 2015. Flame resistant cellulosic substrate using banana pseudostem sap. Polish Journal of Chemical Technology 17 (1):123–33. doi:10.1515/pjct-2015-0018.
  • Bosco, F., R. A. Carletto, J. Alongi, L. Marmo, A. Di Blasio, and G. Malucelli. 2013. Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydrate Polymers 94 (1):372–77. doi:10.1016/j.carbpol.2012.12.075.
  • Carosio, F., A. Di Blasio, J. Alongi, and G. Malucelli. 2013. Green DNA-based flame retardant coatings assembled through layer by layer. Polymer 54 (19):5148–53. doi:10.1016/j.polymer.2013.07.029.
  • Cheema, H. A., A. El-Shafei, and P. J. Hauser. 2013. Conferring flame retardancy on cotton using novel halogen-free flame retardant bifunctional monomers: Synthesis, characterizations and applications. Carbohydrate Polymers 92 (1):885–93. doi:10.1016/j.carbpol.2012.09.081.
  • Chen, T., J. Hong, C. Peng, G. Chen, C. Yuan, Y. Xu, B. Zeng, and L. Dai. 2019. Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer. Carbohydrate Polymers 208:14–21. doi:10.1016/j.carbpol.2018.12.023.
  • Cheng, X., R. Tang, J. Guan, and S. Zhou. 2020. An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach. Progress in Organic Coatings 141:105539. doi:10.1016/j.porgcoat.2020.105539.
  • Cheng, X. W., J. P. Guan, X. H. Yang, and R. C. Tang. 2017. Improvement of flame retardancy of silk fabric by bio-based phytic acid, nano-TiO2, and polycarboxylic acid. Progress in Organic Coatings 112:18–26. doi:10.1016/j.porgcoat.2017.06.025.
  • Cheng, X. W., J. P. Guan, X. H. Yang, R. C. Tang, and F. Yao. 2019. A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric. Journal of Cleaner Production 223:342–49. doi:10.1016/j.jclepro.2019.03.157.
  • Costes, L., F. Laoutid, S. Brohez, and P. Dubois. 2017. Bio-based flame retardants: When nature meets fire protection. Materials Science and Engineering: R: Reports 117:1–25. doi:10.1016/j.porgcoat.2017.06.025.
  • Dehabadi, V. A., H. J. Buschmann, and J. S. Gutmann. 2013. Durable press finishing of cotton fabrics: An overview. Textile Research Journal 83 (18):1974–95. doi:10.1177/0040517513483857.
  • Faheem, S., V. Baheti, M. Tunak, J. Wiener, and J. Militky. 2019. Flame resistance behavior of cotton fabrics coated with bilayer assemblies of ammonium polyphosphate and casein. Cellulose 26 (5):3557–74. doi:10.1007/s10570-019-02296-1.
  • Fang, Y., X. Liu, and X. Tao. 2019. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate. Progress in Organic Coatings 134:162–68. doi:10.1016/j.porgcoat.2019.05.010.
  • Fang, Y., X. Zhou, Z. Xing, and Y. Wu. 2017a. An effective flame retardant for poly (ethylene terephthalate) synthesized by phosphaphenanthrene and cyclotriphosphazene. Journal of Applied Polymer Science 134 (35):45246. doi:10.1002/app.45246.
  • Fang, Y., X. Zhou, Z. Xing, and Y. Wu. 2017b. Flame retardant performance of a carbon source containing DOPO derivative in PET and epoxy. Journal of Applied Polymer Science 134:44639. doi:10.1002/app.44639.
  • Gao, D., Y. Zhang, B. Lyu, P. Wang, and J. Ma. 2019a. Nanocomposite based on poly (acrylic acid)/attapulgite towards flame retardant of cotton fabrics. Carbohydrate Polymers 206:245–53. doi:10.1016/j.carbpol.2018.10.113.
  • Gao, Y. Y., C. Deng, Y. Y. Du, S. C. Huang, and Y. Z. Wang. 2019b. A novel bio-based flame retardant for polypropylene from phytic acid. Polymer Degradation and Stability 161:298–308. doi:10.1016/j.polymdegradstab.2019.02.005.
  • Ji, B., P. Tang, C. Hu, and K. Yan. 2019. Catalytic and ionic cross-linking actions of l-glutamate salt for the modification of cellulose by 1, 2, 3, 4-butanetetracarboxylic acid. Carbohydrate Polymers 207:288–96. doi:10.1016/j.carbpol.2018.11.090.
  • Kundu, C. K., X. Wang, L. Song, and Y. Hu. 2020. Chitosan-based flame retardant coatings for polyamide 66 textiles: One-pot deposition versus layer-by-layer assembly. International Journal of Biological Macromolecules 143:1–10. doi:10.1016/j.ijbiomac.2019.11.220.
  • Li, P., B. Wang, Y. Liu, Y. Xu, Z. Jiang, C. Dong, L. Zhang, Y. Liu, and P. Zhu. 2020. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydrate Polymers 237:116173. doi:10.1016/j.carbpol.2020.116173.
  • Ling, C., and L. Guo. 2020. Preparation of a flame-retardant coating based on solvent-free synthesis with high efficiency and durability on cotton fabric. Carbohydrate Polymers 230:115648. doi:10.1016/j.carbpol.2019.115648.
  • Liu, J., B. Wang, X. Xu, J. Cheng, L. Chen, and Y. Yang. 2016. Green finishing of cotton fabrics using a xylitol-extended citric acid cross-linking system on a pilot scale. ACS Sustainable Chemistry & Engineering 4 (3):1131–38. doi:10.1021/acssuschemeng.5b01213.
  • Liu, X., Q. Zhang, B. Peng, Y. Ren, B. Cheng, C. Ding, X. Su, J. Hu, and S. Lin. 2020. Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. Journal of Cleaner Production 243:118641. doi:10.1016/j.jclepro.2019.118641.
  • Lou, J., X. Fan, Q. Wang, P. Wang, J. Yuan, and Y. Yu. 2019. Oxysucrose polyaldehyde: A new hydrophilic crosslinking reagent for anti-crease finishing of cotton fabrics. Carbohydrate Research 486:107783. doi:10.1016/j.carres.2019.107783.
  • Luo, X., D. Shao, C. Xu, Q. Wan, and W. Gao. 2019. An eco-friendly way to whiten yellowish anti-crease cotton fabrics using TBCC-activated peroxide low-temperature post-bleaching. Cellulose 26 (5):3575–88. doi:10.1007/s10570-019-02316-0.
  • Mohsin, M., S. W. Ahmad, A. Khatri, and B. Zahid. 2013. Performance enhancement of fire retardant finish with environment friendly bio cross-linker for cotton. Journal of Cleaner Production 51:191–95. doi:10.1016/j.jclepro.2013.01.031.
  • Qi, H., Y. Huang, B. Ji, G. Sun, F. Qing, C. Hu, and K. Yan. 2016. Anti-crease finishing of cotton fabrics based on crosslinking of cellulose with acryloyl malic acid. Carbohydrate Polymers 135:86–93. doi:10.1016/j.carbpol.2015.08.014.
  • Shariatinia, Z., N. Javeri, and S. Shekarriz. 2015. Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohydrate Polymers 118:183–98. doi:10.1016/j.carbpol.2014.11.039.
  • Tawiah, B., B. Yu, W. Yang, R. K. K. Yuen, and B. Fei. 2019. Facile flame retardant finishing of cotton fabric with hydrated sodium metaborate. Cellulose 26 (7):4629–40. doi:10.1007/s10570-019-02371-7.
  • Teli, M. D., P. Pandit, H. Qi, Y. Huang, B. Ji, G. Sun, F.-L. Qing, C. Hu, and K. Yan. 2017. Novel method of ecofriendly single bath dyeing and functional finishing of wool protein with coconut shell extract biomolecules. ACS Sustainable Chemistry & Engineering 5 (9):8323–33. doi:10.1021/acssuschemeng.7b02078.
  • Wan, C., P. Tian, M. Liu, G. Zhang, and F. Zhang. 2019. Synthesis of a phosphorus˗nitrogen flame retardant endowing cotton with high whiteness and washability. Industrial Crops and Products 141:111738. doi:10.1016/j.indcrop.2019.111738.
  • Welch, C. M. 1988. Tetracarboxylic acids as formaldehyde-free durable press finishing agents: part I: catalyst, additive, and durability studies. Textile Research Journal 58 (8):480–86. doi:10.1177/004051758805800809.
  • Welch, C. M. 1992. Formaldehyde‐free durable‐press finishes. Review of Progress in Coloration and Related Topics 22 (1):32–41. doi:10.1111/j.1478-4408.1992.tb00087.x.
  • Welch, C. M., and J. G. Peters. 1997. Mixed polycarboxylic acids and mixed catalyst in formaldehyde-free durable press finishing. Textile Chemist & Colorist 29:3. doi:10.1002/vnl.10171.
  • Yang, T., J. Guan, R. Tang, and G. Chen. 2018. Condensed tannin from dioscorea cirrhosa tuber as an eco-friendly and durable flame retardant for silk textile. Industrial Crops and Products 115:16–25. doi:10.1016/j.indcrop.2018.02.018.
  • Zhang, Y., W. Tian, L. Liu, W. Cheng, W. Wang, K. M. Liew, B. Wang, and Y. Hu. 2019a. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chemical Engineering Journal 372:1077–90. doi:10.1016/j.cej.2019.05.012.
  • Zhang, Z., Z. Ma, Q. Leng, and Y. Wang. 2019b. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions. International Journal of Biological Macromolecules 140:303–10. doi:10.1016/j.ijbiomac.2019.08.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.