972
Views
12
CrossRef citations to date
0
Altmetric
Review

A Review on Silver Nanoparticles -green Synthesis, Antimicrobial Action and Application in Textiles

ORCID Icon &

References

  • Abbaszadegan, A., Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, and H. Sharghi. 2015. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. research article. Journal of Nanomaterials 2015 Hindawi: 1–8. doi:10.1155/2015/720654.
  • Abramov, O. V., A. Gedanken, Y. Koltypin, N. Perkas, I. Perelshtein, E. Joyce, and T. J. Mason. 2009. Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surface & Coatings Technology 204 (5):718–22. doi:10.1016/j.surfcoat.2009.09.030.
  • Ahmed, S., M. Ahmad, B. L. Swami, and S. Ikram. 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research 7 (1):17–28. doi:10.1016/j.jare.2015.02.007.
  • Andreescu, D., C. Eastman, K. Balantrapu, and D. V. Goia. 2007. A simple route for manufacturing highly dispersed silver nanoparticles. Journal of Materials Research 22 (9). Cambridge University Press:2488–96. doi:10.1557/jmr.2007.0308.
  • Anil Kumar, S., M. K. Abyaneh, S. W. Gosavi, S. K. Kulkarni, R. Pasricha, A. Ahmad, and M. I. Khan. 2007. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters 29 (3):439–45. doi:10.1007/s10529-006-9256-7.
  • Annadhasan, M., V. R. SankarBabu, R. Naresh, K. Umamaheswari, and N. Rajendiran. 2012. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications. Colloids and Surfaces. B, Biointerfaces 96 (August):14–21. doi:10.1016/j.colsurfb.2012.03.009.
  • Avasthi, D. K., Y. K. Mishra, D. Kabiraj, N. P. Lalla, and J. C. Pivin. 2007. Synthesis of metal–polymer nanocomposite for optical applications. Nanotechnology 18 (12):125604. doi:10.1088/0957-4484/18/12/125604.
  • Baker, C., A. Pradhan, L. Pakstis, D. Pochan, and S. I. Shah. 2005. Synthesis and antibacterial properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology 5 (2):244–49. doi:10.1166/jnn.2005.034.
  • Balamurugan, M., S. Saravanan and T. Soga. 2017. Coating of Green-Synthesized Silver Nanoparticles on Cotton Fabric. Journal of Coatings Technology and Research 14 (3): 735–745. doi:10.1007/s11998-016-9894-1
  • Barbinta-Patrascu, M. E., N. Badea, C. Ungureanu, M. Constantin, C. Pirvu, and I. Rau. 2016. Silver-based biohybrids “Green” synthesized from Chelidonium Majus L. Optical Materials, Advanced Materials for Optics, Photonics, Renewable Energies and Their Recent Advances 56 (June):94–99. doi:10.1016/j.optmat.2015.10.021.
  • Baszkin, A., and W. Norde. 1999. Physical chemistry of biological interfaces. CRC Press.
  • Behravan, M., A. Hossein Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, and A. Mirzapour. 2019. Facile green synthesis of silver nanoparticles using Berberis Vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules 124 (March):148–54. doi:10.1016/j.ijbiomac.2018.11.101.
  • Behzad, F., S. M. Naghib, M. A. J. kouhbanani, S. N. Tabatabaei, Y. Zare, and K. Y. Rhee. 2021. An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. Journal of Industrial and Engineering Chemistry 94 (February):92–104. doi:10.1016/j.jiec.2020.12.005.
  • Bianchini, A., K. C. Bowles, C. J. Brauner, J. W. Gorsuch, J. R. Kramer, and C. M. Wood. 2002. Evaluation of the effect of reactive sulfide on the acute toxicity of silver (I) to Daphnia Magna. Part 2: Toxicity results. Environmental Toxicology and Chemistry 21 (6):1294–300. doi:10.1002/etc.5620210626.
  • Bondarenko, O., K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, and A. Kahru. 2013. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Archives of Toxicology 87 (7):1181–200. doi:10.1007/s00204-013-1079-4.
  • Boryo, D. E. A. 2013. The effect of microbes on textile material: A review on the way-out so far. The International Journal Of Engineering And Science (IJES) 2 (8):09–13. www.theijes.com.
  • Burda, C., X. Chen, R. Narayanan, and M. A. El-Sayed. 2005. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews 105 (4). American Chemical Society:1025–102. doi:10.1021/cr030063a.
  • Chauhan, P., A. Kumar, and B. Bhushan. 2019. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. Journal of Colloid and Interface Science 535 (February):66–74. doi:10.1016/j.jcis.2018.09.087.
  • Choi, O., and Z. Hu. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science & Technology 42 (12):4583–88. doi:10.1021/es703238h.
  • Choi, O. K., and Z. Q. Hu. 2009. Nitrification inhibition by silver nanoparticles. Water Science and Technology 59 (9):1699–702. doi:10.2166/wst.2009.205.
  • Chopra, I. 2007. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? Journal of Antimicrobial Chemotherapy 59 (4). Oxford Academic:587–90. doi:10.1093/jac/dkm006.
  • Christensen, F. M., H. J. Johnston, V. Stone, R. J. Aitken, S. Hankin, S. Peters, and K. Aschberger. 2010. Nano-silver – feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 4 (3). Taylor & Francis:284–95. doi:10.3109/17435391003690549.
  • Dillard, C. J., and A. L. Tappel. 1986. Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. Journal of Inorganic Biochemistry 28 (1):13–20. doi:10.1016/0162-0134(86)80019-8.
  • Durán, N., P.D. Marcato, O.L. Alves, J.P.S. Da Silva, G.I.H. De Souza, F.A. Rodrigues and E. Esposito. 2010. Ecosystem Protection by Effluent Bioremediation: Silver Nanoparticles Impregnation in a Textile Fabrics Process. Journal of Nanoparticle Research 12 (1): 285–292. doi:10.1007/s11051-009-9606-1
  • Eid, A.M., A. Fouda, G. Niedbała, S.E.-D. Hassan, S.S. Salem, A.M. Abdo, H. F. Hetta and T.I. Shaheen. 2020. Endophytic Streptomyces Laurentii Mediated Green Synthesis of Ag-NPs with Antibacterial and Anticancer Properties for Developing Functional Textile Fabric Properties. Antibiotics 9 (10). Multidisciplinary Digital Publishing Institute: 641. doi:10.3390/antibiotics9100641
  • Elavazhagan, T., and K. D. Arunachalam. 2011. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. International Journal of Nanomedicine 6:1265–78. doi:10.2147/IJN.S18347.
  • El-Bisi, M. K., H. M. El-Rafie, M. H. El-Rafie, and A. Hebeish. 2013. Honey bee for eco-friendly green synthesis of silver nanoparticles and application to cotton textile. Egyptian Journal of Chemistry 56 (3):187–98. doi:10.21608/ejchem.2013.1107.
  • Engelbrekt, C., K. H. Sørensen, J. Zhang, A. C. Welinder, P. S. Jensen, and J. Ulstrup. 2009. Green synthesis of gold nanoparticles with starch–glucose and application in bioelectrochemistry. Journal of Materials Chemistry 19 (42):7839. doi:10.1039/b911111e.
  • Erickson, R. J., L. T. Brooke, M. D. Kahl, F. V. Venter, S. L. Harting, T. P. Markee, and R. L. Spehar. 1998. Effects of laboratory test conditions on the toxicity of silver to aquatic organisms. Environmental Toxicology and Chemistry 17 (4):572–78. doi:10.1002/etc.5620170407.
  • Fabrega, J., S. N. Luoma, C. R. Tyler, T. S. Galloway, and J. R. Lead. 2011. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environment International 37 (2):517–31. doi:10.1016/j.envint.2010.10.012.
  • Faunce, T., and A. Watal. 2010. Nanosilver and global public health: International regulatory issues. Nanomedicine (London, England) 5 (4):617–32. doi:10.2217/nnm.10.33.
  • Feng, Q. L., J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus. Journal of Biomedical Materials Research 52 (4):662–68. doi:10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.
  • Firdhouse, M. J., and P. Lalitha. 2016. Biogenic silver nanoparticles – synthesis, characterization and its potential against cancer inducing bacteria. Journal of Molecular Liquids 222 (October):1041–50. doi:10.1016/j.molliq.2016.07.141.
  • Gardea-Torresdey, J. L., E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, and M. Jose-Yacaman. 2003. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 19 (4). American Chemical Society:1357–61. doi:10.1021/la020835i.
  • Gericke, M., and A. Pinches. 2006. Biological synthesis of metal nanoparticles. Hydrometallurgy, 16th International Biohydrometallurgy Symposium, 83 ( 1): 132–40. doi:10.1016/j.hydromet.2006.03.019.
  • Gomathi, M., P. V. Rajkumar, A. Prakasam, and K. Ravichandran. 2017. Green synthesis of silver nanoparticles using datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Efficient Technologies 3 (3):280–84. doi:10.1016/j.reffit.2016.12.005.
  • González-Ballesteros, N., J. B. Rodríguez-González, and M. C. Rodríguez-Argüelles. 2018. Harnessing the wine dregs: An approach towards a more sustainable synthesis of gold and silver nanoparticles. Journal of Photochemistry and Photobiology. B, Biology 178 (January):302–09. doi:10.1016/j.jphotobiol.2017.11.025.
  • Gudikandula, K., P. Vadapally, and M. A. Singara Charya. 2017. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano 2 (January):64–78. doi:10.1016/j.onano.2017.07.002.
  • Guilger-Casagrande, M., and R. de Lima. 2019. Synthesis of silver nanoparticles mediated by fungi: A review. Frontiers in Bioengineering and Biotechnology 7 (Frontiers). doi: 10.3389/fbioe.2019.00287.
  • Hamelian, M., M.M. Zangeneh, A. Amisama, K. Varmira and H. Veisi. 2018. Green Synthesis of Silver Nanoparticles Using Thymus Kotschyanus Extract and Evaluation of Their Antioxidant, Antibacterial and Cytotoxic Effects. Applied Organometallic Chemistry 32 (9): e4458. doi:doi:https://doi.org/10.1002/aoc.4458
  • Hebeish, A., M.E. El-Naggar, M.M.G. Fouda, M.A. Ramadan, S.S. Al-Deyab and M.H. El-Rafie. 2011. Highly Effective Antibacterial Textiles Containing Green Synthesized Silver Nanoparticles. Carbohydrate Polymers 86 (2): 936–940. doi:10.1016/j.carbpol.2011.05.048
  • Heydari, R., and M. Rashidipour. 2015. Green Synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): Synthesis and in vitro cytotoxic effect on MCF-7 cells. Research article. International Journal of Breast Cancer 2015 Hindawi: 1–6. doi:10.1155/2015/846743.
  • Hiremath, L., S. Narendra Kumar, and P. Sukanya. 2018. Development of antimicrobial smart textiles fabricated with magnetite nano particles obtained through green synthesis. Materials Today: Proceedings 5 (10):21030–39. doi:10.1016/j.matpr.2018.06.496.
  • House, J. E., and K. A. House. 2016. Chapter 14 - Phosphorus, Arsenic, Antimony, and Bismuth. In Descriptive inorganic chemistry (Third Edition), edited by J. E. House and K. A. House, 215–34. Boston: Academic Press. doi:10.1016/B978-0-12-804697-5.00014-2.
  • Huang, J., Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong and C. Chen. 2007. Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum Camphora Leaf, 11
  • Hussain, I., N. B. Singh, A. Singh, H. Singh, and S. C. Singh. 2016a. Green synthesis of nanoparticles and its potential application. Biotechnology Letters 38 (4):545–60. doi:10.1007/s10529-015-2026-7.
  • Hussain, I., N. B. Singh, A. Singh, H. Singh, and S. C. Singh. 2016b. Green synthesis of nanoparticles and its potential application. Biotechnology Letters 38 (4):545–60. doi:10.1007/s10529-015-2026-7.
  • Ibrahim, H.M.M., and M.S. Hassan. 2016. Characterization and Antimicrobial Properties of Cotton Fabric Loaded with Green Synthesized Silver Nanoparticles. Carbohydrate Polymers 151 (October): 841–850. doi:10.1016/j.carbpol.2016.05.041
  • Ibrahim, H.M.M., and M.S. Hassan. 2016. Characterization and Antimicrobial Properties of Cotton Fabric Loaded with Green Synthesized Silver Nanoparticles. Carbohydrate Polymers 151 (October): 841–850. doi:10.1016/j.carbpol.2016.05.041
  • Jeeva, K., M. Thiyagarajan, V. Elangovan, N. Geetha and P. Venkatachalam. 2014a. Caesalpinia Coriaria Leaf Extracts Mediated Biosynthesis of Metallic Silver Nanoparticles and Their Antibacterial Activity against Clinically Isolated Pathogens. Industrial Crops and Products 52 (January): 714–720. doi:10.1016/j.indcrop.2013.11.037
  • Jeeva, K., M. Thiyagarajan, V. Elangovan, N. Geetha and P. Venkatachalam. 2014b. Caesalpinia Coriaria Leaf Extracts Mediated Biosynthesis of Metallic Silver Nanoparticles and Their Antibacterial Activity against Clinically Isolated Pathogens. Industrial Crops and Products 52 (January): 714–720. doi:10.1016/j.indcrop.2013.11.037
  • Jha, A.K., and K. Prasad. 2016. Green Synthesis And Antimicrobial Activity Of Silver Nanoparticles Onto Cotton Fabric: An Amenable Option For Textile Industries. Advanced Materials Letters 7 (1): 42-46. doi:10.5185/amlett.2016.6083.
  • Ji, J. H., J. H. Jung, S. S. Kim, J.-U. Yoon, J. D. Park, B. S. Choi, Y. H. Chung, I. H. Kwon, J. Jeong, B. S. Han, et al. 2007. Twenty-eight-day inhalation toxicity study of silver nanoparticles in sprague-dawley rats. Inhalation Toxicology 19 (10). Taylor & Francis:857–71. doi:10.1080/08958370701432108.
  • Ji, M., X. Chen, C. M. Wai, and J. L. Fulton. 1999. Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion. Journal of the American Chemical Society 121 (11):2631–32. doi:10.1021/ja9840403.
  • Kalimuthu, K., R. Suresh Babu, D. Venkataraman, M. Bilal, and S. Gurunathan. 2008. Biosynthesis of silver nanocrystals by Bacillus Licheniformis. Colloids and Surfaces. B, Biointerfaces 65 (1):150–53. doi:10.1016/j.colsurfb.2008.02.018.
  • Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz. 2003. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry. B 107 (3):668–77. doi:10.1021/jp026731y.
  • Khalil, M. M. H., E. H. Ismail, K. Z. El-Baghdady, and D. Mohamed. 2014. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry 7 (6):1131–39. doi:10.1016/j.arabjc.2013.04.007.
  • Kim, J. S., E. Kuk, K. N. Yu, J.-H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C.-Y. Hwang, et al. 2007. Antimicrobial Effects of Silver Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 3 (1):95–101. doi:10.1016/j.nano.2006.12.001.
  • Kim, S.-H., H.-S. Lee, D.-S. Ryu, S.-J. Choi, and D.-S. Lee. 2011. Antibacterial activity of silver-nanoparticles against staphylococcus aureus and escherichia coli. Microbiology and Biotechnology Letters 39 (1). The Korean Society for Microbiology and Biotechnology: 77–85. https://www.koreascience.or.kr/article/JAKO201106737198819.page
  • Km, F., . H. M., and N. S. 1996. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquatic Microbial Ecology 10 (1):15–27. doi:10.3354/ame010015.
  • Kumar, B., K. Smita, L. Cumbal and A. Debut. 2017. Sacha Inchi (Plukenetia Volubilis L.) Shell Biomass for Synthesis of Silver Nanocatalyst. Journal of Saudi Chemical Society 21 (January): S293–S298. doi:10.1016/j.jscs.2014.03.005
  • Lansdown, A. B. G. 2010. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Advances in Pharmacological Sciences 2010 (August). Hindawi:e910686. doi:10.1155/2010/910686.
  • Leung, T. C.-Y., C. K. Wong, and Y. Xie. 2010. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan. Materials Chemistry and Physics 121 (3):402–05. doi:10.1016/j.matchemphys.2010.02.026.
  • Li, S., Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, and Q. Zhang. 2007. Green synthesis of silver nanoparticles using Capsicum Annuum L. extract. Green Chemistry 9 (8):852. doi:10.1039/b615357g.
  • Liao, C., Y. Li, and S. C. Tjong. 2019. Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences 20 (2). Multidisciplinary Digital Publishing Institute:449. doi:10.3390/ijms20020449.
  • Lim, S.-H., and S. M. Hudson. 2004. Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydrate Polymers 56 (2):227–34. doi:10.1016/j.carbpol.2004.02.005.
  • López-Téllez, G., P. Balderas-Hernández, C. E. Barrera-Díaz, A. R. Vilchis-Nestor, G. Roa-Morales, and B. Bilyeu. 2013. Green method to form iron oxide nanorods in orange peels for chromium(VI) reduction. Journal of Nanoscience and Nanotechnology 13 (3):2354–61. doi:10.1166/jnn.2013.7093.
  • Lubick, N. 2008. Nanosilver toxicity: Ions, nanoparticles—or both? Environmental Science & Technology 42 (23):8617–8617. doi:10.1021/es8026314.
  • Mahltig, B., and T. Textor. 2010. Silver containing sol-gel coatings on polyamide fabrics as antimicrobial finish-description of a technical application process for wash permanent antimicrobial effect. Fibers and Polymers 11 (8):1152–58. doi:10.1007/s12221-010-1152-z.
  • Makarov, V. V., A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina. 2014. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6 (1):35–44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999464/.
  • Mamatha, G., A. V. Rajulu, and K. Madhukar. 2020. In situ generation of bimetallic nanoparticles in cotton fabric using aloe vera leaf extract, as a reducing agent. Journal of Natural Fibers 17 (8). Taylor & Francis:1121–29. doi:10.1080/15440478.2018.1558146.
  • Mandal, D., M. E. Bolander, D. Mukhopadhyay, G. Sarkar, and P. Mukherjee. 2006. The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology 69 (5):485–92. doi:10.1007/s00253-005-0179-3.
  • Maneewattanapinyo, P., W. Banlunara, C. Thammacharoen, S. Ekgasit, and T. Kaewamatawong. 2011. An evaluation of acute toxicity of colloidal silver nanoparticles. Journal of Veterinary Medical Science advpub: 1106220557–1106220557. doi:10.1292/jvms.11-0038.
  • Mendis, E., N. Rajapakse, H.-G. Byun, and S.-K. Kim. 2005. Investigation of Jumbo Squid (Dosidicus Gigas) Skin gelatin peptides for their in vitro antioxidant effects. Life Sciences 77 (17):2166–78. doi:10.1016/j.lfs.2005.03.016.
  • Mijnendonckx, K., N. Leys, J. Mahillon, S. Silver, and R. Van Houdt. 2013. Antimicrobial silver: Uses, toxicity and potential for resistance. BioMetals 26 (4):609–21. doi:10.1007/s10534-013-9645-z.
  • Mishra, Y. K., S. Mohapatra, D. Kabiraj, B. Mohanta, N. P. Lalla, J. C. Pivin, and D. K. Avasthi. 2007. Synthesis and Characterization of Ag Nanoparticles in Silica Matrix by Atom Beam Sputtering. Scripta Materialia 56 (7):629–32. doi:10.1016/j.scriptamat.2006.12.008.
  • Mishra, Y. K., V. S. K. Chakravadhanula, U. Schürmann, H. Kumar, D. Kabiraj, S. Ghosh, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel. 2008. Controlled reduction of size of Ag nanoparticles embedded in teflon matrix by MeV ion irradiation. Ion Beam Analysis 266 (8):1804–09. doi:10.1016/j.nimb.2008.01.040.
  • Molnár, Z., V. Bódai, G. Szakacs, B. Erdélyi, Z. Fogarassy, G. Sáfrán, T. Varga, Z. Kónya, E. Tóth-Szeles, R. Szűcs, et al. 2018. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific Reports 8 (1). Nature Publishing Group:3943. doi:10.1038/s41598-018-22112-3.
  • Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16 (10). IOP Publishing:2346–53. doi:10.1088/0957-4484/16/10/059.
  • Mowafi, S., M. Rehan, H. M. Mashaly, A. A. El-Kheir, and H. E. Emam. 2017. Influence of silver nanoparticles on the fabrics functions prepared by in-situ technique. The Journal of the Textile Institute 108 (10). Taylor & Francis:1828–39. doi:10.1080/00405000.2017.1292649.
  • Nadiger, V. G., and S. R. Shukla. 2016. Antibacterial properties of silk fabric treated with silver nanoparticles. The Journal of the Textile Institute 107 (12). Taylor & Francis:1543–53. doi:10.1080/00405000.2015.1129756.
  • Naika, H. R., K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, and H. Nagabhushana. 2015. Green synthesis of CuO nanoparticles using Gloriosa Superba L. Extract and their antibacterial activity. Journal of Taibah University for Science 9 (1):7–12. doi:10.1016/j.jtusci.2014.04.006.
  • Nateghi, M. R., and H. Hajimirzababa. 2014. Effect of silver nanoparticles morphologies on antimicrobial properties of cotton fabrics. The Journal of the Textile Institute 105 (8). Taylor & Francis:806–13. doi:10.1080/00405000.2013.855377.
  • Natsuki, J. 2015. A review of silver nanoparticles: Synthesis methods, properties and applications. International Journal of Materials Science and Applications 4 (5):325. doi:10.11648/j.ijmsa.20150405.17.
  • Neal, A. L. 2008. What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17 (5):362–71. doi:10.1007/s10646-008-0217-x.
  • Noruzi, M., D. Zare, K. Khoshnevisan and D. Davoodi. 2011. Rapid Green Synthesis of Gold Nanoparticles Using Rosa Hybrida Petal Extract at Room Temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 79 (5): 1461–1465. doi:10.1016/j.saa.2011.05.001
  • Nowack, B., H. F. Krug, and M. Height. 2011. 120 years of nanosilver history: Implications for policy makers. Environmental Science & Technology 45 (4). American Chemical Society:1177–83. doi:10.1021/es103316q.
  • Pal, S., Y. K. Tak, and J. M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli. Applied and Environmental Microbiology 73 (6):1712–20. doi:10.1128/AEM.02218-06.
  • Parthiban, E., N. Manivannan, R. Ramanibai, and N. Mathivanan. 2019. Green synthesis of silver-nanoparticles from annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnology Reports 21 (March):e00297. doi:10.1016/j.btre.2018.e00297.
  • Patil, A.H., S.A. Jadhav, K.D. Gurav, S.R. Waghmare, G.D. Patil, V.D. Jadhav, S.H. Vhanbatte, P.V. Kadole, K.D. Sonawane and P.S. Patil. 2019. Single Step Green Process for the Preparation of Antimicrobial Nanotextiles by Wet Chemical and Sonochemical Methods. The Journal of The Textile Institute 0 (0). Taylor & Francis: 1–9. doi:10.1080/00405000.2019.1697160
  • Peng, X., J. Wickham, and A. P. Alivisatos. 1998. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. Journal of the American Chemical Society 120 (21):5343–44. doi:10.1021/ja9805425.
  • Peralta-Videa, J. R., Y. Huang, J. G. Parsons, L. Zhao, L. Lopez-Moreno, J. A. Hernandez-Viezcas, and J. L. Gardea-Torresdey. 2016. Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnology for Environmental Engineering 1 (1):4. doi:10.1007/s41204-016-0004-5.
  • Periolatto, M., . F. F. V. 2017. Novel antimicrobial agents and processes for textile applications | IntechOpen. https://www.intechopen.com/books/antibacterial-agents/novel-antimicrobial-agents-and-processes-for-textile-applications
  • Plotnikov, E., V. Silnikov, A. Gapeyev, and V. Plotnikov. 2016. Investigation of DNA-damage and chromosomal aberrations in blood cells under the influence of new silver-based antiviral complex. Advanced Pharmaceutical Bulletin 6 (1):71–74. doi:10.15171/apb.2016.011.
  • Pulidindi, K., . H. P. 2020. Antimicrobial market. Global Market Insights, Inc. https://www.gminsights.com/industry-analysis/antimicrobial-textiles-market.
  • Quadros, M. E., and L. C. Marr. 2010. Environmental and human health risks of aerosolized silver nanoparticles. Journal of the Air & Waste Management Association 60 (7). Taylor & Francis:770–81. doi:10.3155/1047-3289.60.7.770.
  • Quinteros, M. A., V. Cano Aristizábal, P. R. Dalmasso, M. G. Paraje, and P. L. Páez. 2016. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicology in Vitro 36 (October):216–23. doi:10.1016/j.tiv.2016.08.007.
  • Raimondi, F., G. G. Scherer, R. Kötz, and A. Wokaun. 2005. Nanoparticles in energy technology: Examples from electrochemistry and catalysis. Angewandte Chemie International Edition 44 (15):2190–209. doi:10.1002/anie.200460466.
  • Rajakumar, G., and A. Abdul Rahuman. 2011. Larvicidal Activity of Synthesized Silver Nanoparticles Using Eclipta Prostrata Leaf Extract against Filariasis and Malaria Vectors. Acta Tropica 118 (3): 196–203. doi:10.1016/j.actatropica.2011.03.003
  • Rajeshkumar, S., and L. V. Bharath. 2017. Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions 273 (August):219–27. doi:10.1016/j.cbi.2017.06.019.
  • Ramakrishna, M., D. Rajesh Babu, R. M. Gengan, S. Chandra, and G. Nageswara Rao. 2016. Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry 6 (1):1–13. doi:10.1007/s40097-015-0173-y.
  • Ramamurthy, C. H., M. Padma, I. D. mariya samadanam, R. Mareeswaran, A. Suyavaran, M. S. Kumar, K. Premkumar, and C. Thirunavukkarasu. 2013. The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids and Surfaces. B, Biointerfaces 102 (February):808–15. doi:10.1016/j.colsurfb.2012.09.025.
  • Rana, M., B. Hao, L. Mu, L. Chen, and P.-C. Ma. 2016. Development of multi-functional cotton fabrics with Ag/AgBr–TiO2 nanocomposite coating. Composites Science and Technology 122 (January):104–12. doi:10.1016/j.compscitech.2015.11.016.
  • Raveendran, P., J. Fu, and S. L. Wallen. 2003. Completely “Green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society 125 (46). American Chemical Society:13940–41. doi:10.1021/ja029267j.
  • Raza, Z. A. 2018. In situ synthesis and immobilization of nanosilver on knitted cellulose fabric. Journal of Natural Fibers 15 (2):183–90. doi:10.1080/15440478.2017.1321517.
  • Reidy, B., A. Haase, A. Luch, K. Dawson, and I. Lynch. 2013. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 6 (6):2295–350. doi:10.3390/ma6062295.
  • Reneker, D. H., and A. L. Yarin. 2008. Electrospinning jets and polymer nanofibers. Polymer 49 (10):2387–425. doi:10.1016/j.polymer.2008.02.002.
  • Rohani Shirvan, A., S. Kordjazi, and A. Bashari. 2019. Environmentally friendly finishing of cotton fabric via star-like silver micro/nano particles synthesized with neem/salep. Journal of Natural Fibers (November):1–9. doi:10.1080/15440478.2019.1691122.
  • Roy, K., C. K. Sarkar, and C. K. Ghosh. 2015. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces Cerevisiae) extract. Applied Nanoscience 5 (8):953–59. doi:10.1007/s13204-014-0392-4.
  • Royal society, R. A. O. E. (. B. 2004. Nanoscience and nanotechnologies: Opportunities and uncertainties. London: The Royal Society : Royal Academy of Engineering.
  • Saleem, A. M., G. Prabhavathi, M. Karunanithy, A. Ayeshamariam, and M. Jayachandran. 2018. Green synthesis of nanoparticle by plant extracts—A new aproach in nanoscience. Journal of Bionanoscience 12 (3):401–07. doi:10.1166/jbns.2018.1528.
  • Sangeetha, G., S. Rajeshwari, and R. Venckatesh. 2011. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Materials Research Bulletin 46 (12):2560–66. doi:10.1016/j.materresbull.2011.07.046.
  • Sarkar, P., D.K. Bhui, H. Bar, G.P. Sahoo, S. Samanta, S. Pyne and A. Misra. 2010. Aqueous-Phase Synthesis of Silver Nanodiscs and Nanorods in Methyl Cellulose Matrix: Photophysical Study and Simulation of UV–Vis Extinction Spectra Using DDA Method. Nanoscale Research Letters 5 (10): 1611–1618. doi:10.1007/s11671-010-9684-0
  • Sarkar, S., A. D. Jana, S. K. Samanta, and G. Mostafa. 2007. Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron 26 (15):4419–26. doi:10.1016/j.poly.2007.05.056.
  • Sasaki, K., M. Tenjimbayashi, K. Manabe, and S. Shiratori. 2016. Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Applied Materials & Interfaces 8 (1). American Chemical Society:651–59. doi:10.1021/acsami.5b09782.
  • Sathishkumar, M., K. Sneha, S.W. Won, C.-W. Cho, S. Kim and Y.-S. Yun. 2009. Cinnamon Zeylanicum Bark Extract and Powder Mediated Green Synthesis of Nano-Crystalline Silver Particles and Its Bactericidal Activity. Colloids and Surfaces B: Biointerfaces 73 (2): 332–338. doi:10.1016/j.colsurfb.2009.06.005
  • Sathishkumar, M., K. Sneha, and Y.-S. Yun. 2010. Immobilization of silver nanoparticles synthesized using curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology 101 (20):7958–65. doi:10.1016/j.biortech.2010.05.051.
  • Shah, P. S., J. D. Holmes, R. C. Doty, K. P. Johnston, and B. A. Korgel. 2000. Steric stabilization of nanocrystals in supercritical CO2 using fluorinated ligands. Journal of the American Chemical Society 122 (17). American Chemical Society:4245–46. doi:10.1021/ja9943748.
  • Shahidi, S., H. Rezaee, A. Rashidi, and M. Ghoranneviss. 2018. In situ synthesis of ZnO nanoparticles on plasma treated cotton fabric utilizing durable antibacterial activity. Journal of Natural Fibers15 (5). Taylor & Francis:639–47. doi:10.1080/15440478.2017.1349714
  • Shahidi, S., H. Rezaee, A. Rashidi, and M. Ghoranneviss. 2018. In situ synthesis of ZnO nanoparticles on plasma treated cotton fabric utilizing durable antibacterial activity. Journal of Natural Fibers 15 (5). Taylor & Francis:639–47. doi:10.1080/15440478.2017.1349714.
  • Shahidi, S., M. Rashidian, and D. Dorranian. 2018. Preparation of antibacterial textile using laser ablation method. Optics & Laser Technology 99 (February):145–53. doi:10.1016/j.optlastec.2017.08.025.
  • Shankar, S. S., A. Rai, A. Ahmad, and M. Sastry. 2004. Rapid synthesis of Au, Ag, and Bimetallic Au Core–Ag shell nanoparticles using neem (Azadirachta Indica) leaf broth. Journal of Colloid and Interface Science 275 (2):496–502. doi:10.1016/j.jcis.2004.03.003.
  • Singh, P.K., and M. Goyal. 2020 Green Synthesis Using Klebsiella Pneumoniae as Well as Its Execution onto Textiles for Microbe Resistance. IOP Conference Series: Materials Science and Engineering 988 (December): 012071. doi:10.1088/1757-899X/988/1/012071.
  • Sivaranjana, P., E. Nagarajan, N. Rajini, N. Ayrilmis, A. V. Rajulu, and S. Siengchin. 2021. Preparation and characterization studies of modified cellulosic textile fabric composite with in situ-generated AgNPs coating. Journal of Industrial Textiles 50 (7):1111–26. doi:10.1177/1528083719855312.
  • Soenen, S. J., P. Rivera-Gil, J.-M. Montenegro, W. J. Parak, S. C. De Smedt, and K. Braeckmans. 2011. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6 (5):446–65. doi:10.1016/j.nantod.2011.08.001.
  • Sondi, I., and B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agent: A case study on e. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science 275 (1):177–82. doi:10.1016/j.jcis.2004.02.012.
  • Sood, R., and D. S. Chopra. 2018. Regulatory approval of silver nanoparticles. Applied Clinical Research, Clinical Trials and Regulatory Affairs 5 (2):74–79. doi:10.2174/2213476X05666180614121601.
  • Subba Rao, Y., V.S. Kotakadi, T.N.V.K.V. Prasad, A.V. Reddy and D.V.R. Sai Gopal. 2013. Green Synthesis and Spectral Characterization of Silver Nanoparticles from Lakshmi Tulasi (Ocimum Sanctum) Leaf Extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 103 (February): 156–159. doi:10.1016/j.saa.2012.11.028
  • Sutherland, W. J., M. Clout, I. M. Côté, P. Daszak, M. H. Depledge, L. Fellman, E. Fleishman, R. Garthwaite, D. W. Gibbons, J. De Lurio, et al. 2010. A Horizon Scan of Global Conservation Issues for 2010. Trends in Ecology & Evolution 25 (1):1–7. doi:10.1016/j.tree.2009.10.003.
  • Thakkar, K. N., S. S. Mhatre, and R. Y. Parikh. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 6 (2):257–62. doi:10.1016/j.nano.2009.07.002.
  • Tripathy, A., A. M. Raichur, N. Chandrasekaran, T. C. Prathna, and A. Mukherjee. 2010. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of azadirachta indica (Neem) leaves. Journal of Nanoparticle Research 12 (1):237–46. doi:10.1007/s11051-009-9602-5.
  • TSE, L., and T. L. HO. 1975. The hard soft acids bases (Hsab) principle and organic chemistry.
  • Turakhia, B., M.B. Divakara, M.S. Santosh and S. Shah. 2020. Green Synthesis of Copper Oxide Nanoparticles: A Promising Approach in the Development of Antibacterial Textiles. Journal of Coatings Technology and Research 17 (2): 531–540. doi:10.1007/s11998-019-00303-5
  • Uğur, Ş. S., M. Sarıışık, A. H. Aktaş, M. Ç. Uçar, and E. Erden. 2010. Modifying of cotton fabric surface with Nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Research Letters 5 (7). SpringerOpen:1204–10. doi:10.1007/s11671-010-9627-9.
  • Vasireddy, R., R. Paul, and A. K. Mitra. 2012. Green synthesis of silver nanoparticles and the study of optical properties. Nanomaterials and Nanotechnology 2 (December). SAGE Publications Ltd STM:8. doi:10.5772/52329.
  • Verma, A., and M. S. Mehata. 2016. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences 9 (1). Taylor & Francis:109–15. doi:10.1016/j.jrras.2015.11.001.
  • Vigneshwaran, N., A. A. Kathe, P. V. Varadarajan, R. P. Nachane, and R. H. Balasubramanya. 2007. Functional finishing of cotton fabrics using silver nanoparticles. Journal of Nanoscience and Nanotechnology 7 (6):1893–97. doi:10.1166/jnn.2007.737.
  • Vijayaraghavan, K., S. P. K. Nalini, N. U. Prakash, and D. Madhankumar. 2012. Biomimetic synthesis of silver nanoparticles by aqueous extract of syzygium aromaticum. Materials Letters 75 (May):33–35. doi:10.1016/j.matlet.2012.01.083.
  • Vivek, R., R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri and S. Kannan. 2012. Green Biosynthesis of Silver Nanoparticles from Annona Squamosa Leaf Extract and Its in Vitro Cytotoxic Effect on MCF-7 Cells. Process Biochemistry 47 (12): 2405–2410. doi:10.1016/j.procbio.2012.09.025
  • Wang, Y., and Y. Xia. 2004. Bottom-Up and Top-Down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Letters 4 (10):2047–50. doi:10.1021/nl048689j.
  • Xing, H., J. Cheng, X. Tan, C. Zhou, L. Fang, and J. Lin. 2020. Ag nanoparticles-coated cotton fabric for durable antibacterial activity: Derived from Phytic acid–Ag complex. The Journal of the Textile Institute 111 (6):855–61. doi:10.1080/00405000.2019.1668137.
  • Xu, Q., X. Ke, L. Shen, N. Ge, Y. Zhang, F. Fu, and X. Liu. 2018. Surface modification by carboxymethy chitosan via pad-dry-cure method for binding Ag NPs onto cotton fabric. International Journal of Biological Macromolecules 111 (May):796–803. doi:10.1016/j.ijbiomac.2018.01.091.
  • Yang, N., and W.-H. Li. 2013. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Industrial Crops and Products 48 (July):81–88. doi:10.1016/j.indcrop.2013.04.001.
  • You, C., C. Han, X. Wang, Y. Zheng, Q. Li, X. Hu, and H. Sun. 2012. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Molecular Biology Reports 39 (9):9193–201. doi:10.1007/s11033-012-1792-8.
  • Zain, N. M., A. G. F. Stapley, and G. Shama. 2014. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydrate Polymers 112 (November):195–202. doi:10.1016/j.carbpol.2014.05.081.
  • Zhang, D., L. Chen, C. Zang, Y. Chen, and H. Lin. 2013. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydrate Polymers 92 (2):2088–94. doi:10.1016/j.carbpol.2012.11.100.
  • Zhang, F., X. Wu, Y. Chen, and H. Lin. 2009. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers and Polymers 10 (4):496–501. doi:10.1007/s12221-009-0496-8.
  • Zhou, Q., J. Lv, Y. Ren, J. Chen, D. Gao, Z. Lu, and C. Wang. 2017a. A green in situ synthesis of silver nanoparticles on cotton fabrics using Aloe Vera leaf extraction for durable ultraviolet protection and antibacterial activity. Textile Research Journal 87 (19):2407–19. doi:10.1177/0040517516671124.
  • Zhou, Q., J. Lv, Y. Ren, J. Chen, D. Gao, Z. Lu, and C. Wang. 2017b. A green in situ synthesis of silver nanoparticles on cotton fabrics using aloe vera leaf extraction for durable ultraviolet protection and antibacterial activity. Textile Research Journal 87 (19). SAGE Publications Ltd STM:2407–19. doi:10.1177/0040517516671124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.