184
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Moisture Characteristics of Glycerol Treated Bacterial Cellulose Nonwoven

ORCID Icon &

References

  • Almeida, I. F. T., N. H. C. S. Pereira, F. P. Silva, A. J. D. Gomes, C. S. R. Silvestre, J. M. Freire, C. CostaP., and P. C. Costa. 2014. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. European Journal of Pharmaceutics and Biopharmaceutics 86 (3):332–36. doi:10.1016/j.ejpb.2013.08.008.
  • Chan, C. K., J. Shin, and S. X. K. Jiang. 2018. Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design. Clothing and Textiles Research Journal 36 (1):33–44. doi:10.1177/0887302X17737177.
  • Cielecka, I., M. Szustak, H. Kalinowska, E. G. Darmach, M. Ryngajłło, W. Maniukiewicz,and, and S. Bielecki. 2019. Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose 26 (9):409–5426. doi:10.1007/s10570-019-02501-1.
  • Costa, A. F. D., J. D. P. de Amorim, F. C. G. Almeida, I. D. De Lima, S. C. de Paiva, M. A. V. Rocha, G. M. Vinhas, and L. A. Sarubbo. 2019. Dyeing of bacterial cellulose films using plant-based natural dyes. International Journal of Biological Macromolecules 121:580–87. doi:10.1016/j.ijbiomac.2018.10.066.
  • Domskiene, J., F. Sederaviciute, and J. Simonaityte. 2019. Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology 31 (5):644–52. doi:10.1108/IJCST-02-2019-0010.
  • Fairs, M., 2014. “Microbes are the factories of the future”. https://www.dezeen.com/2014/02/12/movie-biocouture-microbes-clothing-wearable-futures/(Acessed on February 2021)
  • Fernandes, M., M. Gama, F. Dourado, and A. P. Souto. 2019. Development of novel bacterial cellulose composites for the textile and shoe industry. MicrobBiotechnol 12 (4):650–61. doi:10.1111/1751-7915.13387.
  • Gao, C., G. Y. Xiong, H. L. Luo, K. J. Ren, Y. Huang, and Y. Z. Wan. 2010. Dynamic interaction between the growing Ca–P minerals and bacterial cellulose nanofibers during early biomineralization process. Cellulose 17 (2):365–73. doi:10.1007/s10570-009-9371-4.
  • Gea, S. Innovative bio-nanocomposites based on bacterial cellulose, Doctor of Philosophy, thesis, Queen Mary University of London, London, 2010.
  • Han, J., E. Shim, and H. R. Kim. 2019. Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Textile Research Journal 89 (6):1094–104. doi:10.1177/0040517518763989.
  • Harmon, J. 2017 . Homegrown: investigating design potential of bacterial cellulose. International Textile and Apparel Association (ITAA) Annual Conference Proceedings, St. Petersburg, Florida. 15. https://lib.dr.iastate.edu/itaa_proceedings/2017/design/15
  • Harnett, P. R., and P. N. Mehta. 1984. A survey and comparison of laboratory test methods for measuring wicking. Textile Research Journal 54 (7):471. doi:10.1177/004051758405400710.
  • Hu, J., Y. Li, K.-W. Yeung, A. S. W. Wong, and W. Xu. 2005. Moisture management tester: A method to characterize fabric liquid moisture management properties. Textile Research Journal 75 (1):57–62. doi:10.1177/004051750507500111.
  • Illa, M. P., C. S. Sharma, and M. Khandelwal. 2019. Tuning the physiochemical properties of bacterial cellulose: Effect of drying conditions. Journal of Materials Science 54 (18):12024–35. doi:10.1007/s10853-019-03737-9.
  • Jahan, F., V. Kumar, and R. K. Saxena. 2018. Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance. Bioresource Technology 250:922–26. doi:10.1016/j.biortech.2017.09.094.
  • Kaminski, K., M. Jarosz, J. Grudzien, J. Pawlik, F. Zastawnik, P. Pandyra, and A. M. Kołodziejczyk. 2020. Hydrogel bacterial cellulose: A path to improved materials for new eco-friendly textiles. Cellulose 27 (9):5353–65. doi:10.1007/s10570-020-03128-3.
  • Kim, H., J. E. Song, and H. R. Kim. 2021. Comparative study on the physical entrapment of soy and mushroom proteins on the durability of bacterial cellulose bio-leather. Cellulose. doi:10.1007/s10570-021-03705-0.
  • Kongruang, S. 2008. Bacterial cellulose production by acetobacter xylinum strains from agricultural waste products. Appl BiochemBiotechnol 148:245–56. doi:10.1007/s12010-007-8119-6.
  • Kumar, P., S. K. Sinha, and S. Ghosh. 2015. Moisture management behaviour of modified polyester wool fabrics. Fashion and Textiles 2 (1):5. doi:10.1186/s40691-015-0027-8.
  • Lainioti, G. C., G. Bounos, G. A. Voyiatzis, and J. K. Kallitsis. 2016. Enhanced water vapor transmission through porous membranes based on melt blending of polystyrene sulfonate with polyethylene copolymers and their CNT nanocomposites. Polymers 8 (5):190. doi:10.3390/polym8050190.
  • Ng, F. M. C., and P. W. Wang. 2016. Natural self-grown fashion from bacterial cellulose: A paradigm shift design approach in fashion creation. Des. J 19:837–55. doi:10.1080/14606925.2016.1208388.
  • Okano, T., and A. Sarko. 1985. Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. Journal of Applied Polymer Science 30 (1):325–32. doi:10.1002/app.1985.070300128.
  • Parte, F. G. B., S. P. Santoso, C. C. Chou, V. Verma, H. T. Wang, S. Ismadji, and K. C. Cheng. 2020. Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology 40 (3):397–414. doi:10.1080/07388551.2020.1713721.
  • Phisalaphong, M., T. Suwanmajo, and P. Tammarate. 2008. Synthesis and characterization of bacterial cellulose/alginate blend membranes. Journal of Applied Polymer Science 107 (5):3419–24. doi:10.1002/app.27411.
  • Rathinamoorthy, R., T. Aarthi, C. A. Aksayashree, P. Haridharani, V. Shruthi, and R. L. Vaishnikka. 2019. Development and Characterization of Self -assembled bacterial cellulose nonwoven film. Journal of Natural Fibers 1–14. https://doi.org/10.1080/15440478.2019.1701609
  • Shim, E., and H. R. Kim. 2019. Coloration of bacterial cellulose using in situ and ex situ methods. Textile Research Journal 89 (7):1297–310. doi:10.1177/0040517518770673.
  • Sun, Y., C. Meng, Y. Zheng, Y. Xie, W. He, Y. Wang, K. Qiao, and L. Yue. 2018. The effects of two biocompatible plasticizers on the performance of dry bacterial cellulose membrane: A comparative study. Cellulose 25 (10):5893–908. doi:10.1007/s10570-018-1968-z.
  • Tsouko, E., C. Kourmentza, D. Ladakis, N. Kopsahelis, I. Mandala, S. Papanikolaou, F. Paloukis, V. Alves, and A. Koutinas. 2015. Bacterial cellulose production from industrial waste and by-product streams. International Journal of Molecular Sciences 16 (12):14832–49. doi:10.3390/ijms160714832.
  • Tyurin, I., V. Getmantseva, E. Andreeva, and O. Kashcheev, 2019. The study of themolding capabilities of bacterial cellulose, AUTEX2019 – 19th World Textile Conference on Textiles at the Crossroads, 11-15 June 2019, Ghent, Belgium, https://ojs.ugent.be/autex/article/view/11745
  • Yang, H. J., T. Lee, J. R. Kim, Y. E. Choi, and C. Park. 2019. Improved production of bacterial cellulose from waste glycerol through investigation of inhibitory effects of crude glycerol-derived compounds by Gluconacetobacter xylinus. Journal of Industrial and Engineering Chemistry 75:158–63. doi:10.1016/j.jiec.2019.03.017.
  • Zeng, M., A. Laromaine, and A. Roig. 2014. Bacterial cellulose films: Influence of bacterial strain and drying route on film properties. Cellulose 21 (6):4455–69. doi:10.1007/s10570-014-0408-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.