194
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Barrier, Mechanical and Morphological Properties of Biodegradable Films Based on Corn Starch Incorporated with Cellulose Obtained from Pineapple Crowns

, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Balaji, A. N., and K. J. Nagarajan. 2017. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydrate Polymers 174:200–08. doi:10.1016/j.carbpol.2017.06.065.
  • Cai, M., H. Takagi, A. N. Nakagaito, Y. Li, and G. I. Waterhouse. 2016. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing 90:589. doi:10.1016/j.compositesa.2016.08.025.
  • Choquecahua, D. M., K. S. Otero Nole, E. E. Chaparro Montoya, D. A. Mayta Huiza, R. Y. Pastrana Alta, and H. Aguilar Vitorino. 2020. Minimizing organic waste generated by pineapple crown: a simple process to obtain cellulose for the preparation of recyclable containers. Recycling 5 (4):1–12. doi:10.3390/recycling5040024.
  • Collazo-Bigliardi, S., R. Ortega-Toro, and A. C. Boix. 2018. Reinforcement of thermoplastic starch films with cellulose fibres obtained from rice and coffee husks. Journal of Renewable Materials 6 (7):599–610. doi:10.32604/JRM.2018.00127.
  • Collazo-Bigliardi, S., R. Ortega-Toro, and A. Chiralt. 2019. Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Food Packaging and Shelf Life 22. doi:10.1016/j.fpsl.2019.100383.
  • Curvelo, A. A. S. 2001. Thermoplastic starch–cellulosic fibers composites: Preliminary results. Carbohydrate Polymers 45 (2):183–88. doi:10.1016/S0144-8617(00)00314-3.
  • Davletbaeva, I. M., S. E. Dulmaev, O. O. Sazonov, A. V. Klinov, R. S. Davletbaev, and A. M. Gumerov. 2019. Water vapor permeable polyurethane films based on the hyperbranched aminoethers of boric acid. RSC Advances 9 (41):589–97. doi:10.1016/j.compositesa.2016.08.025.
  • Edhirej, A., S. M. Sapuan, M. Jawaid, and N. I. Zahari. 2017. Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. International Journal of Biological Macromolecules 101:75–83. doi:10.1039/C9RA05314J.
  • El Halal, S. L., G. P. Bruni, J. A. Do Evangelho, B. Biduski, F. T. Silva, A. R. Dias, and M. De Mello Luvielmo. 2018. The properties of potato and cassava starch films combined with cellulose fibers and/or nanoclay. Starch 70 (1–10):2018. doi:10.1002/star.201700115.
  • Fareez, I. M., N. A. Ibrahim, W. M. H. W. Yaacob, N. A. M. Razali, A. H. Jasni, and F. A. Aziz. 2018. Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25 (8):4407–21. doi:10.1007/s10570-018-1878-0.
  • Gazonato, E. C., A. A. D. Maia, V. A. D. S. Moris, and J. M. F. D. Paiva. 2019. Thermomechanical properties of corn starch based film reinforced with coffee ground waste as renewable resource. Materials Research 22 (2):1–8. doi:10.1590/1980-5373-mr-2018-0416.
  • Halimatul, M. J., S. M. Sapuan, M. Jawaid, M. R. Ishak, and R. A. Ilyas. 2019. Water absorption and water solubility properties of sago starch biopolymer composite films filled with sugar palm particles. Polimery 64 (9):595–603. doi:10.14314/polimery.2019.9.4.
  • Iewkittayakorn, J., P. Khunthongkaew, Y. Wongnoipla, K. Kaewtatip, P. Suybangdum, and A. Sopajarn. 2020. Biodegradable plates made of pineapple leaf pulp with biocoatings to improve water resistance. Journal of Materials Research and Technology 9 (3):5056–66. doi:10.1016/j.jmrt.2020.03.023.
  • Iskandar, W. M. E., H. R. Ong, M. M. R. Khan, R. Ramli, and R. M. Halim. 2021. Influence of ultrasound on alkaline treatment of empty fruit bunch fibre: preliminary study. In IOP Conference Series: Materials Science and Engineering 1092 (1). Pekan Pahang, Malaysia. doi:10.1088/1757-899X/1092/1/012002.
  • Landim, A. P. M., C. O. Bernardo, I. B. A. Martins, M. R. Francisco, M. B. Santos, and N. R. De Melo. 2016. Sustainability concerning food packaging in Brazil. Polímeros: Ciência E Tecnologia 26:82–92. doi:10.1590/0104-1428.1897.
  • Liu, Y., J. Xie, N. Wu, Y. Ma, C. Menon, and J. Tong. 2019. Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose 26 (8):4707–19. doi:10.1007/s10570-019-02429-6.
  • Luchese, C. L., P. Benelli, J. C. Spada, and I. C. Tessaro. 2018. Impact of the starch source on the physicochemical properties and biodegradability of different starch‐based films. Journal of Applied Polymer Science 135 (33):1–11. doi:10.1002/app.46564.
  • Mali, S., and M. V. E. Grossmann. 2003. Effects of inhame film movies on storability and quality of fresh strawberries (Fragaria ananassa). Journal of Agricultural and Food Chemistry 51 (24):7005–11. doi:10.1021/jf034241c.
  • Mariño, M. A., A. Rezend, and L. Tasic. 2018. A multistep mild process for preparation of nanocellulose from orange bagasse. Cellulose 25 (10):5739–50. doi:10.1007/s10570-018-1977-y.
  • Martins, M. P., J. L. A. Dagostin, T. S. Franco, G. I. B. De Muñiz, and M. L. Masson. 2020. Application of cellulose nanofibrils isolated from an agroindustrial residue of peach palm in cassava starch films. Food Biophysics 15:323–34. doi:10.1007/s11483-020-09626-y.
  • Miranda, R., J. V. Neta, L. F. R. Ferreira, W. A. G. Júnior, C. S. do Nascimento, E. D. B. Gomes, and Á. S. Lima. 2019. Pineapple crown delignification using low-cost ionic liquid based on ethanolamine and organic acids. Carbohydrate Polymers 206:302–08. doi:10.1016/j.carbpol.2018.10.112.
  • Mittal, M., and R. Chaudhary. 2018. Experimental study on the water absorption and surface characteristics of alkali treated pineapple leaf fiber and coconut husk fiber. International Journal of Applied Engineering Research 13 (15):12237–43.
  • Montero, B., M. Rico, S. Rodríguez-Llamazares, L. Barral, and R. Bouza. 2017. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydrate Polymers 157:1094–104. doi:10.1016/j.carbpol.2016.10.073.
  • Nordin, N., S. H. Othman, S. A. Rashid, and R. K. Basha. 2020. Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocolloids 106:1–8. doi:10.1016/j.foodhyd.2020.105884.
  • Oun, A. A., and J. W. Rhim. 2016. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers 150:187–200. doi:10.1016/j.carbpol.2016.05.020.
  • Pego, M. F. F., M. L. Bianchi, and P. K. Yasumura. 2020. Nanocellulose reinforcement in paper produced from fiber blending. Wood Science and Technology 54 (6):1587–603. doi:10.1007/s00226-020-01226-w.
  • Pereira, P. H. F., H. L. Ornaghi Jr, V. Arantes, and M. O. H. Cioffi. 2020. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research 499. doi:10.1016/j.carres.2020.108227.
  • Prado, K. S., and M. A. Spinacé. 2019. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International Journal of Biological Macromolecules 122:410–16. doi:10.1016/j.ijbiomac.2018.10.187.
  • Reddy, J. P., and J. W. Rhim. 2018. Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. Journal of Natural Fibers 15 (4):465–73. doi:10.1080/15440478.2014.945227.
  • Sanchez, M. L., W. Patiño, and J. Cardenas. 2020. Physical-mechanical properties of bamboo fibers-reinforced biocomposites: Influence of surface treatment of fibers. Journal of Building Engineering 28. doi:10.1016/j.jobe.2019.101058.
  • Sathishkumar, T. P., P. Navaneethakrishnan, S. Shankar, and R. Rajasekar. 2013. Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Composite Interfaces 20 (8):575–93. doi:10.1080/15685543.2013.816652.
  • Segal, L. G. J. M. A., J. J. Creely, A. E. Martin Jr, and C. M. Conrad. 1959. Na empirical method for estimating the degree of crystallinity of native celulose using the x- ray diffractometer. Textile Research Jornal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Senthamaraikannan, P., S. S. Saravanakumar, M. R. Sanjay, M. Jawaid, and S. Siengchin. 2019. Physico-chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement. Materials Letters 240:221–24. doi:10.1016/j.matlet.2019.01.024.
  • Silvério, H. A., W. P. F. Neto, N. O. Dantas, and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products 44. doi:10.1016/j.indcrop.2012.06.041.
  • Souza, C. O. D., L. T. Silva, and J. I. Druzian. 2012. Comparative studies on the characterization of biodegradable cassava starch films containing mango and acerola pulps. Química Nova 35 (2):262–67. doi:10.1590/S0100-40422012000200006.
  • Senthamaraikannan, P., and Kathiresan, M. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis. L. Carbohydrate Polymers 186:332–343. doi:10.1016/j.carbpol.2018.01.072.
  • Srinivasa, P. C., M. N. Ramesh, K. R. Kumar, and R. N. Tharanathan. 2003. Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohydrate Polymers 5 (4):431–38. doi:10.1016/S0144-8617(03)00105-X.
  • Tavares, K. M., A. De Campos, M. C. Mitsuyuki, B. R. Luchesi, and J. M. Marconcini. 2019. Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties. Carbohydrate Polymers 223. doi:10.1016/j.carbpol.2019.115055.
  • Thawien, W. 2010. Characteristics and properties of rice starch films reinforced with palm pressed fibers. International Food Research Journal 17:535–47.
  • Wang, K., W. Wang, R. Ye, A. Liu, J. Xiao, Y. Liu, and Y. Zhao. 2017. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations. Food Chemistry 216:209–16. doi:10.1016/j.foodchem.2016.08.048.
  • Wittaya, T. 2009. Microcomposites of rice starch film reinforced with microcrystalline cellulose from palm pressed fiber. International Food Research Journal 16 (4):493–500.
  • Wróblewska-Krepsztul, J., T. Rydzkowski, G. Borowski, M. Szczypiński, T. Klepka, and V. K. Thakur. 2018. Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization 23 (4):383–95. doi:10.1080/1023666X.2018.1455382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.