260
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Graphene Oxide Surface Treatment on Piassava Fiber Attalea funifera to Improve Adhesion in Epoxy Matrix

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Aquino, R. C. M. P., S. N. Monteiro, and J. R. M. D’Almeida. 2003. Evaluation of the critical fiber length of piassava (Attalea funifera) fibers using the pullout test. Journal of Materials Science Letters 22 (21):1495–97. doi:10.1023/A:1026147013294.
  • Assis, F. S., A. C. Pereira, F. C. Garcia Filho, E. P. Lima Jr, S. N. Monteiro, and R. P. Weber. 2018. Performance of jute non-woven mat reinforced polyester matrix composite in multilayered armor. Journal of Materials Research and Technology 7 (4):535–40. doi:10.1016/j.jmrt.2018.05.026.
  • Barbosa, J. D. V., J. B. Azevedo, P. S. M. Cardoso, F. C. Garcia Filho, and T. G. Rio. 2020. Development and characterization of WPCs produced with high amount of wood residue. Journal of Materials Research and Technology 9 (5):9684–90. doi:10.1016/j.jmrt.2020.06.073.
  • Cai, M., H. Takagi, A. N. Nakagaito, Y. Li, and G. I. Waterhouse. 2016. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites. Part A, Applied Science and Manufacturing 90:589–97. doi:10.1016/j.compositesa.2016.08.025.
  • Castro, J. P., . J. R. C., M. L. Nobre, P. F. Bianchi, A. Trugilho, B. S. Napoli, B. S. Chiou, T. G. Williams, D. F. Wood, R. J. Avena-Bustillos, W. J. Orts, et al. 2019. Activated carbons prepared by physical activation from different pretreatments of amazon piassava fibers. Journal of Natural Fibers 16 (7):961–76. doi:10.1080/15440478.2018.1442280.
  • Castro, R. G., F. C. Amorim, and J. M. L. Reis. 2020. Effects of fiber length on the performance of piassava-reinforced epoxy composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 234 (11):1431–38. doi:10.1177/1464420720944982.
  • Chaitanya, S., I. Singh, and J. I. Song. 2019. Recyclability analysis of PLA/Sisal fiber biocomposites. Composites Part B: Engineering 173:106895. doi:10.1016/j.compositesb.2019.05.106.
  • Chen, J., Z. Huang, W. Lv, and C. Wang. 2018. Graphene oxide decorated sisal fiber/MAPP modified PP composites: Toward high-performance biocomposites. Polymer Composites 39:E113–E121. doi:10.1002/pc.24433.
  • Chen, J., B. Yao, C. Li, and G. Shi. 2013. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–29. doi:10.1016/j.carbon.2013.07.055.
  • Costa, U. O., L. F. C. Nascimento, J. M. Garcia, W. B. A. Bezerra, F. S. Luz, W. A. Pinheiro, S. N. Monteiro, and S. N. Monteiro. 2020. Mechanical properties of composites with graphene oxide functionalization of either epoxy matrix or curaua fiber reinforcement. Journal of Materials Research and Technology 9 (6):13390–401. doi:10.1016/j.jmrt.2020.09.035.
  • Costa, U. O., L. F. C. Nascimento, J. M. Garcia, S. N. Monteiro, F. S. Luz, W. A. Pinheiro, and F. C. Garcia Filho. 2019. Effect of graphene oxide coating on natural fiber composite for multilayered ballistic armor. Polymers 11 (8):1356. doi:10.3390/polym11081356.
  • Čuček, L., J. J. Klemeš, and Z. Kravanja. 2015. Overview of environmental footprints. Assessing and Measuring Environmental Impact and Sustainability 131–93. doi:10.1016/b978-0-12-799968-5.00005-1.
  • D’Almeida, J. R. M., R. C. P. M. Aquino, and S. N. Monteiro. 2006. Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Composites. Part A, Applied Science and Manufacturing 37 (9):1473–79. doi:10.1016/j.compositesa.2005.03.035.
  • Da Silva, I. L. A., A. B. Bevitori, L. A. Rohen, F. M. Margem, F. O. Braga, and S. N. Monteiro. 2016. Characterization by fourier transform infrared (FTIR) analysis for natural jute fiber. Materials Science Forum 869:283–87. www.scientific.net/MSF.869.283.
  • Depuydt, D. E. C., J. Soete, Y. D. Asfaw, M. Wevers, J. Ivens, and A. W. Van Vuure. 2019. Sorption behaviour of bamboo fibre reinforced composites, why do they retain their properties? Composites. Part A, Applied Science and Manufacturing 119:48–60. doi:10.1016/j.compositesa.2019.01.020.
  • Eigler, S., C. Dotzer, and A. Hirsch. 2012. Visualization of defect densities in reduced graphene oxide. Carbon 50 (10):3666–73. doi:10.1016/j.carbon.2012.03.039.
  • Fan, J., Z. Shi, L. Zhang, J. Wang, and J. Yin. 2012. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement. Nanoscale 4 (22):7046–55. doi:10.1039/c2nr31907a.
  • Ferrari, A. C., J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, et al. 2006. Raman spectrum of graphene and graphene layers. Physical Review Letters 97 (18):187401. doi:10.1103/PhysRevLett.97.187401.
  • Ferrari, A. C., and J. Robertson. 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 61 (20):14095. doi:10.1103/PhysRevB.61.14095.
  • Garcia Filho, F. C., F. S. Luz, L. F. C. Nascimento, K. G. Satyanarayana, J. W. Drelich, and S. N. Monteiro. 2020a. Mechanical properties of Boehmeria nivea natural fabric reinforced epoxy matrix composite prepared by vacuum-assisted resin infusion molding. Polymers 12 (6):1311. doi:10.3390/polym12061311.
  • Garcia Filho, F. C., F. S. Luz, M. S. Oliveira, A. C. Pereira, U. O. Costa, and S. N. Monteiro. 2020b. Thermal behavior of graphene oxide-coated piassava fiber and their epoxy composites. Journal of Materials Research and Technology 9 (3):5343–51. doi:10.1016/j.jmrt.2020.03.060.
  • Garcia Filho, F. C., and S. N. Monteiro. 2019. Piassava fiber as an epoxy matrix composite reinforcement for ballistic armor applications. JOM 71 (2):801–08. doi:10.1007/s11837-018-3148-x.
  • Garcia Filho, F. C., M. S. Oliveira, A. C. Pereira, L. F. C. Nascimento, J. R. C. Matheus, and S. N. Monteiro. 2020c. Ballistic behavior of epoxy matrix composites reinforced with piassava fiber against high energy ammunition. Journal of Materials Research and Technology 9 (2):1734–41. doi:10.1016/j.jmrt.2019.12.004.
  • Godara, S. S. 2019. Effect of chemical modification of fiber surface on natural fiber composites: A review. Materials Today: Proceedings 18:3428–34. doi:10.1016/j.matpr.2019.07.270.
  • Gurunathan, T., S. Mohanty, and S. K. Nayak. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites. Part A, Applied Science and Manufacturing 77:1–25. doi:10.1016/j.compositesa.2015.06.007.
  • Hassan, M. M., and M. H. Wagner. 2016. Surface modification of natural fibers for reinforced polymer composites: A critical review. Reviews of Adhesion and Adhesives 4 (1):1–46. doi:10.7569/RAA.2016.097302.
  • Holbery, J., and D. Houston. 2006. Natural-fiber-reinforced polymer composites in automotive applications. JOM 58 (11):80–86. doi:10.1007/s11837-006-0234-2.
  • Hummers, W. S., Jr., and R. E. Offeman. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society 80 (6):1339–1339. doi:10.1021/ja01539a017.
  • Javanshour, F., K. R. Ramakrishnan, R. K. Layek, P. Laurikainen, A. Prapavesis, M. Kanerva, P. Kallio, A. W. Van Vuure, and E. Sarlin. 2021. Effect of graphene oxide surface treatment on the interfacial adhesion and the tensile performance of flax epoxy composites. Composites. Part A, Applied Science and Manufacturing 142:106270. doi:10.1016/j.compositesa.2020.106270.
  • Jha, K., R. Kataria, J. Verma, and S. Pradhan. 2019. Potential biodegradable matrices and fiber treatment for green composites: A review. AIMS Materials Science 6 (1):119–38. doi:10.3934/matersci.2019.1.119.
  • Karthi, N., K. Kumaresan, S. Sathish, S. Gokulkumar, L. Prabhu, and N. Vigneshkumar. 2020. An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials Today: Proceedings 27 (3):2828–34. doi:10.1016/j.matpr.2020.01.011.
  • Kelly, A., and W. R. Tyson. 1965. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids 13 (6):329–50. doi:10.1016/0022-5096(65)90035-9.
  • Koohestani, B., A. K. Darban, P. Mokhtari, E. Yilmaz, and E. Darezereshki. 2019. Comparison of different natural fiber treatments: A literature review. International Journal of Environmental Science and Technology 16 (1):629–42. doi:10.1007/s13762-018-1890-9.
  • Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering 42 (4):856–73. doi:10.1016/j.compositesb.2011.01.010.
  • Kumar, R., M. I. Ul Haq, A. Raina, and A. Anand. 2019. Industrial applications of natural fibre-reinforced polymer composites – Challenges and opportunities. International Journal of Sustainable Engineering 12 (3):212–20. doi:10.1080/19397038.2018.1538267.
  • Lau, K. T., P. Y. Hung, M. H. Zhu, and D. Hui. 2018. Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering 136:222–33. doi:10.1016/j.compositesb.2017.10.038.
  • Li, M., Y. Pu, V. M. Thomas, C. G. Yoo, S. Ozcan, Y. Deng, K. Nelson, and A. J. Ragauskas. 2020. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering 200:108254. doi:10.1016/j.compositesb.2020.108254.
  • Luz, F. S., F. C. Garcia Filho, M. T. Gomez-del Rio, L. F. C. Nascimento, W. A. Pinheiro, and S. N. Monteiro. 2020a. Graphene-incorporated natural fiber polymer composites: A first overview. Polymers 12 (7):1601. doi:10.3390/polym12071601.
  • Luz, F. S., F. C. Garcia Filho, M. S. Oliveira, L. F. C. Nascimento, and S. N. Monteiro. 2020b. Composites with natural fibers and conventional materials applied in a hard armor: A comparison. Polymers 12 (9):1920. doi:10.3390/polym12091920.
  • Luz, F. S., E. P. Lima Jr., L. H. L. Louro, and S. N. Monteiro. 2015. Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric. Materials Research 18 (suppl 2):170–77. doi:10.1590/1516-1439.358914.
  • Luz, F. S., S. N. Monteiro, E. S. Lima, and E. P. Lima Jr. 2018. Ballistic application of coir fiber reinforced epoxy composite in multilayered armor. Materials Research 20 (2):23–28. doi:10.1590/1980-5373-mr-2016-0951.
  • Luz, F. S., S. N. Monteiro, and F. J. Tommasini. 2018. Evaluation of dynamic mechanical properties of PALF and coir fiber reinforcing epoxy composites. Materials Research 21 (suppl 1):e20171108. doi:10.1590/1980-5373-MR-2017-1108.
  • MALS (Ministry of Agriculture, Livestock and Supply). 2014. Situação Atual da Cadeia Produtiva da Piaçava [Current situation of the piassava productive chain]. Accessed April 2nd, 2021. https://www.gov.br/agricultura/pt-br/assuntos/camaras-setoriais-tematicas/documentos/camaras-setoriais/fibras-naturais/anos-anteriores/situacao-atual-da-cadeia-produtiva-da-piacava.pdf/view
  • Marcano, D. C., D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour. 2010. Improved synthesis of graphene oxide. ACS Nano 4 (8):4806–14. doi:10.1021/nn1006368.
  • Monteiro, S. N. 2009. Properties and structure of Attalea funifera (piassava) fibers for composite reinforcement – A critical discussion. Journal of Natural Fibers 6 (2):191–203. doi:10.1080/15440470902961128.
  • Monteiro, S. N., V. M. A. Calado, F. M. Margem, and R. J. S. Rodriguez. 2012. Thermogravimetric stability behavior of less common lignocellulosic fibers - a review. Journal of Materials Research and Technology 1 (3):189–99. doi:10.1016/S2238-7854(12)70032-7.
  • Monteiro, S. N., and J. R. M. D’Almeida. 2006. Ensaios de Pullout em fibras lignocelulósicas – Uma metodologia de análise [Pullout test in lignocellulosic fibers: A methodology of analysis]. Matéria 11 (3):189–96. doi:10.1590/S1517-70762006000300004.
  • Monteiro, S. N., J. W. Drelich, H. A. C. Lopera, L. F. C. Nascimento, F. S. Luz, L. C. Da Silva, J. L. Santos, F. C. Garcia Filho, F. S. Assis, E. P. Lima Jr. 2019. Natural fibers reinforced polymer composites applied in ballistic multilayered armor for personal protection — an overview. In Ikhmayies S., Li J., Vieira C., Margem (Deceased) J., de Oliveira Braga F. (eds.). Green Materials Engineering, 33–47, Cham: Springer. doi: 10.1007/978-3-030-10383-5_4
  • Monteiro, S. N., F. P. D. Lopes, A. P. Barbosa, A. B. Bevitori, I. L. A. Da Silva, and L. L. Da Costa. 2011. Natural lignocellulosic fibers as engineering materials—an overview. Metallurgical and Materials Transactions A 42 (10):2963. doi:10.1007/s11661-011-0789-6.
  • Nascimento, D. C. O., A. S. Ferreira, S. N. Monteiro, R. C. M. P. Aquino, and G. K. Satyanarayana. 2012. Studies on the characterization of piassava fibers and their epoxy composites. Composites. Part A, Applied Science and Manufacturing 43 (3):353–62. doi:10.1016/j.compositesa.2011.12.004.
  • Oliveira, M. S., F. C. Garcia Filho, A. C. Pereira, L. F. Nunes, F. S. Luz, F. O. Braga, H. A. Colorado, and S. N. Monteiro. 2019a. Ballistic performance and statistical evaluation of multilayered armor with epoxy-fique fabric composites using the Weibull analysis. Journal of Materials Research and Technology 8 (6):5899–908. doi:10.1016/j.jmrt.2019.09.064.
  • Oliveira, M. S., F. S. Garcia Filho, F. S. Luz, A. C. Pereira, L. C. C. Demosthenes, L. F. C. Nascimento, H. A. C. Lopera, and S. N. Monteiro. 2019b. Statistical analysis of notch toughness of epoxy matrix composites reinforced with fique fabric. Journal of Materials Research and Technology 8 (6):6051–57. doi:10.1016/j.jmrt.2019.09.079.
  • Pickering, K. L., M. A. Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites. Part A, Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Piggott, M. R. 1995. A new model for interface failure in fibre-reinforced polymers. Composites Science and Technology 55 (3):269–76. doi:10.1016/0266-3538(95)00103-4.
  • Piggott, M. R. 1997. Why interface testing by single-fibre methods can be misleading. Composites Science and Technology 57 (8):965–74. doi:10.1016/S0266-3538(97)00036-5.
  • Piggott, M. R., and Y. J. Xiong. 1994. Visualization of debonding of fully and partially embedded glass fibres in epoxy resins. Composites Science and Technology 52 (4):535–40. doi:10.1016/0266-3538(94)90036-1.
  • Rourke, J. P., P. A. Pandey, J. J. Moore, M. Bates, I. A. Kinloch, R. J. Young, and N. R. Wilson. 2011. The real graphene oxide revealed: stripping the oxidative debris from the Graphene-like Sheets. Angewandte Chemie 123 (14):3231–35. doi:10.1002/ange.201007520.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Santos, E. B. C., C. G. Moreno, J. J. P. Barros, D. A. D. Moura, F. D. C. Fim, A. Ries, R. M. R. Wellen, and L. B. Silva. 2018. Effect of alkaline and hot water treatments on the structure and morphology of piassava fibers. Materials Research 21 (2):0365. doi:10.1590/1980-5373-mr-2017-0365.
  • Sarker, F., N. Karim, S. Afroj, V. Koncherry, K. S. Novoselov, and P. Potluri. 2018. High-performance graphene-based natural fiber composites. ACS Applied Materials & Interfaces 10 (40):34502–12. doi:10.1021/acsami.8b13018.
  • Sarker, F., P. Potluri, S. Afroj, V. Koncherry, K. S. Novoselov, and N. Karim. 2019. Ultrahigh performance of nanoengineered graphene-based natural jute fiber composites. ACS Applied Materials & Interfaces 11 (23):21166–76. doi:10.1021/acsami.9b04696.
  • Sathishkumar, G. K., M. Ibrahim, M. Mohamed Akheel, B. Rajkumar, R. Gopinath, G. Karpagam, P. Karthik, M. Martin Charles, G. Gautham, and S. Gowri. 2020. Synthesis and mechanical properties of natural fiber reinforced epoxy/polyester/polypropylene composites: A review. Journal of Natural Fibers 1–24. doi:10.1080/15440478.2020.1848723.
  • Satyanarayana, K. G., J. L. Guimaraes, and F. Wypych. 2007. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites. Part A, Applied Science and Manufacturing 38 (7):1694–709. doi:10.1016/j.compositesa.2007.02.006.
  • Tissera, N. D., R. N. Wijesena, J. R. Perera, K. N. De Silva, and G. A. Amaratunge. 2015. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating. Applied Surface Science 324:455–63. doi:10.1016/j.apsusc.2014.10.148.
  • Wambua, P., J. Ivens, and I. Verpoest. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology 63 (9):1259–64. doi:10.1016/S0266-3538(03)00096-4.
  • Wang, H., G. Xian, and H. Li. 2015. Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Composites. Part A, Applied Science and Manufacturing 76:172–80. doi:10.1016/j.compositesa.2015.05.027.
  • Wang, Y., Y. Shi, W. Shao, Y. Ren, W. Dong, F. Zhang, and L. Z. Liu. 2020. Crystallization, structures, and properties of different polyolefins with similar grafting degree of maleic anhydride. Polymers 12 (3):675. doi:10.3390/polym12030675.
  • Wang, Y. Y., Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen, and A. T. S. Wee. 2008. Raman studies of monolayer graphene: The substrate effect. The Journal of Physical Chemistry C 112 (29):10637–40. doi:10.1021/jp8008404.
  • Wróblewska, A., A. Dużyńska, J. Judek, L. Stobiński, K. Żerańska, A. P. Gertych, and M. Zdrojek. 2017. Statistical analysis of the reduction process of graphene oxide probed by Raman spectroscopy mapping. Journal of Physics: Condensed Matter 29 (47):475201. doi:10.1088/1361-648X/aa92fe.
  • Wu, C., K. Yang, Y. Gu, J. Xu, R. O. Ritchie, and J. Guan. 2019. Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibres. Composites. Part A, Applied Science and Manufacturing 117:357–68. doi:10.1016/j.compositesa.2018.12.003.
  • Wu, Y., C. Xia, L. Cai, A. C. Garcia, and S. Q. Shi. 2018. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production 184:92–100. doi:10.1016/j.jclepro.2018.02.257.
  • Zah, R., R. Hischier, A. L. Leao, and I. Braun. 2007. Curauá fibers in the automobile industry – A sustainability assessment. Journal of Cleaner Production 15 (11–12):1032–40. doi:10.1016/j.jclepro.2006.05.036.
  • Zhandarov, S., and E. Mäder. 2005. Characterization of fiber/matrix interface strength: Applicability of different tests, approaches and parameters. Composites Science and Technology 65 (1):149–60. doi:10.1016/j.compscitech.2004.07.003.
  • Zhang, T., M. Guo, L. Cheng, and X. Li. 2015. Investigations on the structure and properties of palm leaf sheath fiber. Cellulose 22 (2):1039–51. doi:10.1007/s10570-015-0570-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.