246
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Extraction and Characterization of Nano-cellulose from Local Waste Paper Egg Trays

, , &

References

  • Aitokhuehi, O. J. 2016. Egg crate production from carton wastes: An approach for transforming waste. IOSR Journal of Mechanical and Civil Engineering 13:28–36.
  • Auad, M. L., V. S. Contos, S. Nutt, M. I. Aranguren, and N. E. Marcovich. 2008. Characterization of nanocellulose‐reinforced shape memory polyurethanes. Polymer International 57:651–59. doi:10.1002/pi.2394.
  • Clauser, N. M., F. E. Felissia, M. C. Area, and M. E. Vallejos. 2020. Design of nano and micro fibrillated cellulose production processes from forest industrial wastes in a multiproduct biorefinery. Chemical Engineering Research & Design 167:1–14. doi:10.1016/j.cherd.2020.12.003.
  • Czaja, W. K., D. J. Young, M. Kawecki, and R. M. Brown. 2007. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi:10.1021/bm060620d.
  • Das, K., D. Ray, N. R. Bandyopadhyay, and S. Sengupta. 2010. Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. Journal of Polymers and the Environment 18:355–63. doi:10.1007/s10924-010-0167-2.
  • Ebitsubo, H., Y. Horie, T. Ikeda, and N. Hayashi. 2020. Method for producing cellulose nanofiber using almond seed coat: U.S. Patent Application No. 16/506, 185.
  • Egg Cartons & Trays Market 2021. Retrieved from https://www.marketwatch.com/press-release/egg-carton-trays-market-2021-industry-growth-competitive-analysis-with-top-countries-data-definition-market-size-future-prospects-and-forecast-to-2026-2020-12-25.
  • Eichhorn, S. J. 2011. Cellulose nanowhiskers: Promising materials for advanced applications. Soft Matter 7 (2):303–15. doi:10.1039/C0SM00142B.
  • Espino-Pérez, E., S. Domenek, N. Belgacem, C. Sillard, and J. Bras. 2014. Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15 (12):4551–60. doi:10.1021/bm5013458.
  • Ferronato, N., and V. Torretta. 2019. Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health 16 (6):1060. doi:10.3390/ijerph16061060.
  • Gourmelon, G. 2015. Global plastic production rises, recycling lags. Vital Signs 22:91–95.
  • Habibi, Y., L. A. Lucia, and O. J. Rojas. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110 (6):3479–500. doi:10.1021/cr900339w.
  • Henriksson, M., G. Henriksson, L. A. Berglund, and T. Lindström. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal 43:3434–41.
  • Hong, S., Y. Song, Y. Yuan, H. Lian, and H. Liimatainen. 2020. Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. Industrial Crops and Products 143:111913. doi:10.1016/j.indcrop.2019.111913.
  • Hubbe, M. A., and R. A. Gill. 2016. Fillers for papermaking: A review of their properties, usage practices, and their mechanistic role. BioResources 11 (1):2886–963. doi:10.15376/biores.11.1.2886-2963.
  • Hussin, F. N. N. M., N. Attan, and R. A. Wahab. 2020. Extraction and characterization of nanocellulose from raw oil palm leaves (Elaeis guineensis). Arabian Journal for Science and Engineering 45 (1):175–86. doi:10.1007/s13369-019-04131-y.
  • Lei, W., X. Zhou, C. Fang, Y. Li, Y. Song, C. Wang, and Z. Huang. 2019. New approach to recycle office waste paper: Reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. Waste Management 95:59–69. doi:10.1016/j.wasman.2019.06.003.
  • Mandal, A., and D. Chakrabarty. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers 86 (3):1291–99. doi:10.1016/j.carbpol.2011.06.030.
  • Mariño, M., L. Lopes Da Silva, N. Durán, and L. Tasic. 2015. Enhanced materials from nature: Nanocellulose from citrus waste. Molecules 20 (4):5908–23. doi:10.3390/molecules20045908.
  • Mohamed, M. A., W. N. W. Salleh, J. Jaafar, S. E. A. M. Asri, and A. F. Ismail. 2015. Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Advances 5 (38):29842–49. doi:10.1039/C4RA17020B.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2002. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 10 (1/2):19–26. doi:10.1023/A:1021013921916.
  • Mokhena, T. C., and M. J. John. 2020. Cellulose nanomaterials: New generation materials for solving global issues. Cellulose 27:1149–94.
  • Oprea, M., and S. I. Voicu. 2020. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydrate Polymers 247:116683. doi:10.1016/j.carbpol.2020.116683.
  • Orasugh, J. T., N. R. Saha, G. Sarkar, D. Rana, D. Mondal, S. K. Ghosh, and D. Chattopadhyay. 2018. A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery. International Journal of Biological Macromolecules 109:1246–52. doi:10.1016/j.ijbiomac.2017.11.123.
  • Paridah, M. T., A. B. Basher, S. SaifulAzry, and Z. Ahmed. 2011. Retting process of some bast plant fibres and its effect on fibre quality: A review. BioResources 6:5260–81.
  • Phanthong, P., P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, and G. Guan. 2018. Nanocellulose: Extraction and application. Carbon Resources Conversion 1 (1):32–43. doi:10.1016/j.crcon.2018.05.004.
  • Prabhakar, M. N., and S. Jung-il. 2018. Fabrication and characterisation of starch/chitosan/flax fabric green flame-retardant composites. International Journal of Biological Macromolecules 119:1335–43. doi:10.1016/j.ijbiomac.2018.07.006.
  • Radhakrishnan, S. 2016. Environmental implications of reuse and recycling of packaging. In Environmental Footprints of Packaging, 165–92. Singapore: Springer. doi:10.1007/978-981-287-913-4_7.
  • Ramesh, S., and P. Radhakrishnan. 2019. Cellulose nanoparticles from agro-industrial waste for the development of active packaging. Applied Surface Science 484:1274–81. doi:10.1016/j.apsusc.2019.04.003.
  • Rasheed, M., M. Jawaid, B. Parveez, A. Zuriyati, and A. Khan. 2020. Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. International Journal of Biological Macromolecules 160:183–91. doi:10.1016/j.ijbiomac.2020.05.170.
  • Reddy, J. P., and J. W. Rhim. 2014. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers 110:480–88. doi:10.1016/j.carbpol.2014.04.056.
  • Sankhla, S., H. H. Sardar, and S. Neogi. 2020. Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohydrate Polymers 251:117030. doi:10.1016/j.carbpol.2020.117030.
  • Shirvanimoghaddam, K., B. Motamed, S. Ramakrishna, and M. Naebe. 2020. Death by waste: Fashion and textile circular economy case. Science of the Total Environment 718:137317. doi:10.1016/j.scitotenv.2020.137317.
  • Tang, L. R., B. Huang, Y. H. Li, W. Ou, and X. R. Chen. 2010. Characterization and analysis of ultrastructure of nano-cellulose crystal. Biomass Chemical Engineering 2:1–4.
  • Theivasanthi, T., F. A. Christma, A. J. Toyin, S. C. Gopinath, and R. Ravichandran. 2018. Synthesis and characterization of cotton fiber-based nanocellulose. International Journal of Biological Macromolecules 109:832–36. doi:10.1016/j.ijbiomac.2017.11.054.
  • Wang, H., W. Nie, H. Zhang, H. Jin, Q. Bao, J. Yan, and Q. Liu. 2020. A synthesis of a dust suppressant using the cellulose extracted from maize straw. Starch‐Stärke 72 (3–4):1900187. doi:10.1002/star.201900187.
  • Zhang, X., H. Sun, S. Tan, J. Gao, Y. Fu, and Z. Liu. 2019. Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study. Inorganic Chemistry Communications 100:44–50. doi:10.1016/j.inoche.2018.12.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.