165
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermal Conductivity of Boron Nitride/ Banana Fiber Reinforced Epoxy Hybrid Composites

ORCID Icon & ORCID Icon

References

  • Balaji, A., R. Purushothaman, R. Udhayasankar, S. Vijayaraj, and B. Karthikeyan. 2020. Study on mechanical, thermal and morphological properties of banana fiber-reinforced epoxy composites. Journal of Bio-and Tribo-Corrosion 6 (2):1–10. doi:10.1007/s40735-020-00357-8.
  • Boopalan, M., M. Niranjanaa, and M. J. Umapathy. 2013. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Composites Part B: Engineering 51:54–57. doi:10.1016/j.compositesb.2013.02.033.
  • Bujard, P. 1988. Thermal conductivity of boron nitride filled epoxy resins: Temperature dependence and influence of sample preparation. InterSociety Conference on Thermal Phenomena in the Fabrication and Operation of Electronic Components. I-THERM’88, 41–49. Los Angeles, CA: IEEE.
  • Burger, N., A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, and D. Ruch. 2016. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science 61:1–28. doi:10.1016/j.progpolymsci.2016.05.001.
  • Huang, X., P. Jiang, and T. Tanaka. 2011. A review of dielectric polymer composites with high thermal conductivity. IEEE Electrical Insulation Magazine 27 (4):8–16. doi:10.1109/MEI.2011.5954064.
  • Jiang, Y., X. Shi, Y. Feng, S. Li, X. Zhou, and X. Xie. 2018. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride. Composites Part A: Applied Science and Manufacturing 107:657–64. doi:10.1016/j.compositesa.2018.02.016.
  • Kuang, Z., Y. Chen, Y. Lu, L. Liu, S. Hu, S. Wen, Y. Mao, and L. Zhang. 2015. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small 11 (14):1655–59. doi:10.1002/smll.201402569.
  • Lin, Y., X. Huang, J. Chen, and P. Jiang. 2017. Epoxy thermoset resins with high pristine thermal conductivity. High Voltage 2 (3):139–46. doi:10.1049/hve.2017.0120.
  • Loganathan, T. G., R. Sathish, D. Sreekandan, and S. Thamizhanban. 2020. A review on Thermo mechanical behaviour of hybrid NF composites. Materials Today: Proceedings 33:995–1010.
  • Mauerer, O. 2005. New reactive, halogen-free flame retardant system for epoxy resins. Polymer Degradation and Stability 88 (1):70–73. doi:10.1016/j.polymdegradstab.2004.01.027.
  • Moore, A. L., L. Arden, and L. Shi. 2014. Emerging challenges and materials for thermal management of electronics. Materials Today 17 (4):163–74.
  • Muthukumar, K., R. V. Sabariraj, S. D. Kumar, and T. Sathish. 2020. Investigation of thermal conductivity and thermal resistance analysis on different combination of natural fiber composites of banana, pineapple and jute. Materials Today: Proceedings 21:976–80.
  • Pujari, S., A. Ramakrishna, and K. T. B. Padal. 2017. Investigations on thermal conductivities of jute and banana fiber reinforced epoxy composites. Journal of the Institution of Engineers (India): Series D 98 (1):79–83. doi:10.1007/s40033-015-0102-8.
  • Salunke, D. R., and G. Venkatachalam. 2021. Thermal and electrical behaviors of Boron Nitride/Epoxy reinforced polymer matrix composite—A review. Polymer Composites 42 (4):1659–69. doi:10.1002/pc.25952.
  • Santosha, P. V. C. R. K., A. S. S. S. Gowda, and V. Manikanth. 2018. Effect of fiber loading on thermal properties of banana and pineapple leaf fiber reinforced polyester composites. Materials Today: Proceedings 5 (2):5631–35.
  • Saravanan, A. K., A. R. Prasad, D. Muruganandam, G. Saravanan, S. Vivekanandan, and M. Sudhakar. 2020. Study on natural fiber composites of jute, pine apple and banana compositions percentage of weight basis for thermal resistance and thermal conductivity. Materials Today: Proceedings 37:147–51.
  • Sivaranjana, P., and V. Arumugaprabu. 2021. A brief review on mechanical and thermal properties of banana fiber based hybrid composites. SN Applied Sciences 3 (2):1–8. doi:10.1007/s42452-021-04216-0.
  • Song, W. L., P. Wang, L. Cao, A. Anderson, M. J. Meziani, A. J. Farr, and Y. P. Sun. 2012. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angewandte Chemie 124 (26):6604–07. doi:10.1002/ange.201201689.
  • Srinivasan, V. S., S. R. Boopathy, D. Sangeetha, and B. V. Ramnath. 2014. Evaluation of mechanical and thermal properties of banana–flax based natural fibre composite. Materials and Design 60:620–27. doi:10.1016/j.matdes.2014.03.014.
  • Tanaka, T., Z. Wang, T. Iizuka, M. Kozako, and Y. Ohki. 2011. High thermal conductivity epoxy/BN composites with sufficient dielectric breakdown strength. International Conference on Power and Energy Systems. Chennai, India: IEEE December 1-4.
  • Tang, Y., P. Zhang, M. Zhu, J. Li, Y. Li, Z. Wang, and L. Huang. 2019. Temperature effects on the dielectric properties and breakdown performance of h-BN/epoxy composites. Materials 12 (24):4112. doi:10.3390/ma12244112.
  • Wang, H., W. Chu, and G. Chen. 2019. A brief review on measuring methods of thermal conductivity of organic and hybrid thermoelectric materials. Advanced Electronic Materials 5 (11):1900167. doi:10.1002/aelm.201900167.
  • Wang, S., S. Zhong, Z. Dang, J. Zha, and M. Zheng. 2018a. The thermal conductivity and electrical properties of EP composite with different size BN. IEEE 2nd International Conference on Dielectrics (ICD), Budapest, Hungary, 1–4.
  • Wang, Z., J. Liu, Y. Cheng, S. Chen, M. Yang, J. Huang, H. Wang, G. Wu, and H. Wu. 2018b. Alignment of boron nitride nanofibers in epoxy composite films for thermal conductivity and dielectric breakdown strength improvement. Nanomaterials 8 (4):242. doi:10.3390/nano8040242.
  • Wang, Z., T. Iizuka, M. Kozako, Y. Ohki, and T. Tanaka. 2011. Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength part I-sample preparations and thermal conductivity. IEEE Transactions on Dielectrics and Electrical Insulation 18 (6):1963–72. doi:10.1109/TDEI.2011.6118634.
  • Wattanakul, K., H. Manuspiya, and N. Yanumet. 2011. Effective surface treatments for enhancing the thermal conductivity of BN-filled epoxy composite. Journal of Applied Polymer Science 119 (6):3234–43. doi:10.1002/app.32889.
  • Xu, Y., and D. D. L. Chung. 2000. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Composite Interfaces 7 (4):243–56. doi:10.1163/156855400750244969.
  • Yang, H., Q. Chen, X. Wang, M. Chi, H. Liu, and X. Ning. 2019. Dielectric and thermal conductivity of epoxy resin impregnated nano-h-BN modified insulating paper. Polymers 11 (8):1359. doi:10.3390/polym11081359.
  • Yang, S., Y. Huang, J. Lei, L. Zhu, and Z. Li. 2018a. Enhanced thermal conductivity of polyethylene/boron nitride multilayer sheets through annealing. Composites Part A: Applied Science and Manufacturing 107:135–43. doi:10.1016/j.compositesa.2017.12.031.
  • Yang, X., C. Liang, T. Ma, Y. Guo, J. Kong, J. Gu, M. Chen, and J. Zhu. 2018b. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods. Advanced Composites and Hybrid Materials 1 (2):207–30. doi:10.1007/s42114-018-0031-8.
  • Yung, K. C., and H. Liem. 2007. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. Journal of Applied Polymer Science 106 (6):3587–91. doi:10.1002/app.27027.
  • Zhi, C., Y. Bando, T. Terao, C. Tang, H. Kuwahara, and D. Golberg. 2009. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Advanced Functional Materials 19 (12):1857–62. doi:10.1002/adfm.200801435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.