153
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Silk Fibroin Nanoparticles Functionalized with Fibronectin for Release of Vascular Endothelial Growth Factor to Enhance Angiogenesis

, , , , &

References

  • Ai, C., D. Sheng, J. Chen, J. Cai, S. Wang, J. Jiang, and S. Chen. 2017. Surface modification of vascular endothelial growth factor-loaded silk fibroin to improve biological performance of ultra-high-molecular-weight polyethylene via promoting angiogenesis. International Journal of Nanomedicine 12:7737. doi:10.2147/IJN.S148845.
  • Brunella, V., S. A. Jadhav, I. Miletto, G. Berlier, E. Ugazio, S. Sapino, and D. Scalarone. 2016. Hybrid drug carriers with temperature-controlled on–off release: A simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles. Reactive & Functional Polymers 98:31–37. doi:10.1016/j.reactfunctpolym.2015.11.006.
  • Cheng, X., C. Tsao, V. L. Sylvia, D. Cornet, D. P. Nicolella, T. L. Bredbenner, and R. J. Christy. 2014. Platelet-derived growth-factor-releasing aligned collagen–nanoparticle fibers promote the proliferation and tenogenic differentiation of adipose-derived stem cells. Acta Biomaterialia 10 (3):1360–69. doi:10.1016/j.actbio.2013.11.017.
  • Chung, Y. I., G. Tae, and S. H. Yuk. 2006. A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors. Biomaterials 27:2621–26. doi:10.1016/j.biomaterials.2005.11.043.
  • Farokhi, M., F. Mottaghitalab, M. A. Shokrgozar, J. Ai, J. Hadjati, and M. Azami. 2014. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Materials Science and Engineering: C 35:401–10. doi:10.1016/j.msec.2013.11.023.
  • Fuchs, S., and C. Coester. 2010. Protein-based nanoparticles as a drug delivery system: Chances, risks, perspectives. Journal of Drug Delivery Science and Technology 20 (5):331–42. doi:10.1016/S1773-2247(10)50056-X.
  • Huang, Y., K. Bailey, S. Wang, and X. Feng. 2017. Silk fibroin films for potential applications in controlled release. Reactive & Functional Polymers 116:57–68. doi:10.1016/j.reactfunctpolym.2017.05.007.
  • Jayasuriya, R., U. Dhamodharan, A. N. Karan, A. Anandharaj, K. Rajesh, and K. M. Ramkumar. 2020. Role of Nrf2 in MALAT1/HIF-1α loop on the regulation of angiogenesis in diabetic foot ulcer. Free Radical Biology & Medicine 156:168–75. doi:10.1016/j.freeradbiomed.2020.05.018.
  • Jeon, O., S. J. Song, S. W. Kang, A. J. Putnam, and B. S. Kim. 2007. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly (L-lactic-co-glycolic acid) scaffold. Biomaterials 28:2763–71. doi:10.1016/j.biomaterials.2007.02.023.
  • Ji, W., Y. Sun, F. Yang, J. J. Van Den Beucken, M. Fan, Z. Chen, and J. A. Jansen. 2011. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical Research 28 (6):1259–72. doi:10.1007/s11095-010-0320-6.
  • Jin, H.-J., S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan. 2002. Electrospinning Bombyx mori silk with poly (ethylene oxide). Biomacromolecules 3:1233–39. doi:10.1021/bm025581u.
  • Koide, H., K. Yoshimatsu, Y. Hoshino, S. Ariizumi, A. Okishima, T. Ide, H. Egami, Y. Hamashima, Y. Nishimura, and H. Kanazawa. 2019. Sequestering and inhibiting a vascular endothelial growth factor in vivo by systemic administration of a synthetic polymer nanoparticle. Journal of Controlled Release 295:13–20. doi:10.1016/j.jconrel.2018.12.033.
  • Kumra, H., and D. P. Reinhardt. 2016. Fibronectin-targeted drug delivery in cancer. Advanced Drug Delivery Reviews 97:101–10. doi:10.1016/j.addr.2015.11.014.
  • Lee, J. S., J. W. Bae, Y. K. Joung, S. J. Lee, D. K. Han, and K. D. Park. 2008. Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle. International Journal of Pharmaceutics 346 (1–2):57–63. doi:10.1016/j.ijpharm.2007.06.025.
  • Lee, Y. H., Y. L. Hong, and T. L. Wu. 2021. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Materials Science and Engineering: C 118:111385. doi:10.1016/j.msec.2020.111385.
  • Levengood, S. K. L., M. J. Poellmann, S. G. Clark, D. A. Ingram, M. C. Yoder, and A. J. W. Johnson. 2011. Human endothelial colony forming cells undergo vasculogenesis within biphasic calcium phosphate bone tissue engineering constructs. Acta Biomaterialia 7 (12):4222–28. doi:10.1016/j.actbio.2011.07.006.
  • Li, Y., and L. Yang. 2015. Driving forces for drug loading in drug carriers. Journal of Microencapsulation 32 (3):255–72. doi:10.3109/02652048.2015.1010459.
  • Luo, Z., J. Li, J. Qu, W. Sheng, J. Yang, and M. Li. 2019. Cationized Bombyx mori silk fibroin as a delivery carrier of the VEGF165–Ang-1 coexpression plasmid for dermal tissue regeneration. Journal of Materials Chemistry B 7:80–94. doi:10.1039/c8tb01424h.
  • Martino, M. M., F. Tortelli, M. Mochizuki, S. Traub, D. Ben-David, G. A. Kuhn, R. Müller, E. Livne, S. A. Eming, and J. A. Hubbell. 2011. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Science Translational Medicine 3 (100):89. doi:10.1126/scitranslmed.3002614.
  • Mastrullo, V., W. Cathery, E. Velliou, P. Madeddu, and P. Campagnolo. 2020. Angiogenesis in tissue engineering: As nature intended? Frontiers in Bioengineering and Biotechnology 8:188. doi:10.3389/fbioe.2020.00188.
  • Matsumoto, T., S. Yamashita, S. Yoshino, S. Kurose, K. Morisaki, K. Nakano, J. I. Koga, T. Furuyama, M. Mori, and K. Egashira. 2020. Therapeutic arteriogenesis/angiogenesis for peripheral arterial disease by nanoparticle-mediated delivery of pitavastatin into vascular endothelial cells. Annals of Vascular Diseases 13 (1):4–12. doi:10.3400/avd.ra.19-00130.
  • Mottaghitalab, F., M. Farokhi, F. Atyabi, R. Omidvar, M. A. Shokrgozar, and M. Sadeghizadeh. 2015a. The effect of fibronectin on structural and biological properties of single walled carbon nanotube. Applied Surface Science 339:85–93. doi:10.1016/j.apsusc.2015.02.165.
  • Mottaghitalab, F., M. Farokhi, M. A. Shokrgozar, F. Atyabi, and H. Hosseinkhani. 2015b. Silk fibroin nanoparticle as a novel drug delivery system. Journal of Controlled Release 206:161–76. doi:10.1016/j.jconrel.2015.03.020.
  • Nosrati, H., R. A. Khouy, A. Nosrati, M. Khodaei, M. Banitalebi-Dehkordi, K. Ashrafi-Dehkordi, S. Sanami, and Z. Alizadeh. 2021. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. Journal of Nanobiotechnology 19 (1):1–21. doi:10.1186/s12951-020-00755-7.
  • Olsson, A. K., A. Dimberg, J. Kreuger, and L. Claesson-Welsh. 2006. VEGF receptor signalling? In control of vascular function. Nature Reviews. Molecular Cell Biology 7 (5):359–71. doi:10.1038/nrm1911.
  • Patten, J., and K. Wang. 2021. Fibronectin in development and wound healing. Advanced Drug Delivery Reviews 170:353–68. doi:10.1016/j.addr.2020.09.005.
  • Rademakers, T., J. M. Horvath, C. A. van Blitterswijk, and V. L. S. LaPointe. 2019. Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. Journal ofTtissue Engineering and Regenerative Medicine 13:1815–29. doi:10.1002/term.2932.
  • Seib, F. P., M. Herklotz, K. A. Burke, M. F. Maitz, C. Werner, and D. L. Kaplan. 2014. Multifunctional silk–heparin biomaterials for vascular tissue engineering applications. Biomaterials 35 (1):83–91. doi:10.1016/j.biomaterials.2013.09.053.
  • Seib, F. P., G. T. Jones, J. Rnjak‐Kovacina, Y. Lin, and D. L. Kaplan. 2013. pH‐dependent anticancer drug release from silk nanoparticles. Advanced Healthcare Materials 2:1606–11. doi:10.1002/adhm.201300034.
  • Seidlits, S. K., C. T. Drinnan, R. R. Petersen, J. B. Shear, L. J. Suggs, and C. E. Schmidt. 2011. Fibronectin–hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomaterialia 7 (6):2401–09. doi:10.1016/j.actbio.2011.03.024.
  • Senger, D. R., and G. E. Davis. 2011. Angiogenesis. Cold Spring Harbor Perspectives in Biology 3 (8):a005090. doi:10.1101/cshperspect.a005090.
  • Subia, B., S. Chandra, S. Talukdar, and S. C. Kundu. 2014. Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integrative Biology 6:203–14. doi:10.1039/c3ib40184g.
  • Tanaka, C., and T. Asakura. 2009. Synthesis and characterization of cell-adhesive silk-like proteins constructed from the sequences of Anaphe silk fibroin and fibronectin. Biomacromolecules 10:923–28. doi:10.1021/bm801439t.
  • Tarhini, M., I. Benlyamani, S. Hamdani, G. Agusti, H. Fessi, H. Greige-Gerges, A. Bentaher, and A. Elaissari. 2018. Protein-based nanoparticle preparation via nanoprecipitation method. Materials 11 (3):394. doi:10.3390/ma11030394.
  • Uccelli, A., T. Wolff, P. Valente, N. Di Maggio, M. Pellegrino, L. Gürke, A. Banfi, and R. Gianni-Barrera. 2019. Vascular endothelial growth factor biology for regenerative angiogenesis. Swiss Medical Weekly 149. doi:10.4414/smw.2019.20011.
  • Veith, A. P., K. Henderson, A. Spencer, A. D. Sligar, and A. B. Baker. 2019. Therapeutic strategies for enhancing angiogenesis in wound healing. Advanced Drug Delivery Reviews 146:97–125. doi:10.1016/j.addr.2018.09.010.
  • Wijelath, E. S., J. Murray, S. Rahman, Y. Patel, A. Ishida, K. Strand, S. Aziz, C. Cardona, W. P. Hammond, and G. F. Savidge. 2002. Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circulation Research 91:25–31. doi:10.1161/01.RES.0000026420.22406.79.
  • Wijelath, E. S., S. Rahman, M. Namekata, J. Murray, T. Nishimura, Z. Mostafavi-Pour, Y. Patel, Y. Suda, M. J. Humphries, and M. Sobel. 2006. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: Enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circulation Research 99:853–60. doi:10.1161/01.RES.0000246849.17887.66.
  • Wilson, S. H., A. V. Ljubimov, A. O. Morla, S. Caballero, L. C. Shaw, P. E. Spoerri, R. W. Tarnuzzer, and M. B. Grant. 2003. Fibronectin fragments promote human retinal endothelial cell adhesion and proliferation and ERK activation through α5β1 integrin and PI 3-kinase. Investigative Ophthalmology & Visual Science 44:1704–15. doi:10.1167/iovs.02-0773.
  • Zern, B. J., H. Chu, and Y. Wang. 2010. Control growth factor release using a self-assembled [polycation∶ heparin] complex. PloS One 5:e11017. doi:10.1371/journal.pone.0011017.
  • Zhang, Y. Q., W. D. Shen, R. L. Xiang, L. J. Zhuge, W. J. Gao, and W. B. Wang. 2007. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. Journal of Nanoparticle Research 9:885–900. doi:10.1007/s11051-006-9162-x.
  • Zhao, Z., Y. Li, and M. B. Xie. 2015. Silk fibroin-based nanoparticles for drug delivery. International Journal of Molecular Sciences 16:4880–903. doi:10.3390/ijms16034880.
  • Zhou, J., B. Zhang, X. Liu, L. Shi, J. Zhu, D. Wei, J. Zhong, G. Sun, and D. He. 2016. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydrate Polymers 143:301–09. doi:10.1016/j.carbpol.2016.01.023.
  • Zhu, W., C. Feng, X. Zhang, Q. Fu, L. Song, and R. Chen. 2016. The use of vascular endothelial growth factor with silk fibroin scaffolds and bladder acellular matrix grafts to support bladder reconstruction in rabbit model. Journal of Biomaterials and Tissue Engineering 6:493–99. doi:10.1166/jbt.2016.1466.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.