166
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Vascular Tissue on Mechanical Properties of Fibrovascular Bundles of Salacca Sumatrana Becc. Fronds

ORCID Icon, , &

References

  • Adzkia, U., N. Nugroho, and L. Karlinasari. 2019. Anatomical Feature of Royal Palm Leaf Sheath. IOP Conference Series: Earth and Environmental Science 399: 1–8,012061. Bogor, Indonesia: IOP Publishing. doi:10.1088/1755-1315/399/1/012061.
  • Alshukur, M., and A. Fotheringham. 2020. Studying the Tensile Properties at the First Break of Multiple-Yarn Structure Fancy Gimp Yarns Using the Design of Experiments. Journal of Natural Fibers 17 (5):716–25. doi:10.1080/15440478.2018.1527741.
  • Baley, C. 2002. Analysis of the Flax Fibres Tensile Behaviour and Analysis of the Tensile Stiffness Increase. Composite-Part A: Applied Science and Manufacturing 33 (7):939–48. doi:10.1016/S1359-835X(02)00040-4.
  • Carlquist, S. 2012. Monocot Xylem Revisited: New Information, New Paradigms. Botanical Review 78 (2):87–153. doi:10.1007/s12229-012-9096-1.
  • Darwis, A., and A. H. Iswanto. 2018. Morphological Characteristics of Bambusa vulgaris and the Distribution and Shape of Vascular Bundles therein. Journal of Korean Wood Science and Technology 46 (4):315–22. doi:10.5658/WOOD.2018.46.4.315.
  • Darwis, A., D. R. Nurrochmat, M. Y. Massijaya, N. Nugroho, E. M. Alamsyah, E. T. Bachtiar, and R. Safe’i. 2013. Vascular Bundle Distribution Effect on Density and Mechanical Properties of Oil Palm Trunk. Asian Journal of Plant Science 12 (5):208–13. doi:10.3923/ajps.2013.208.213.
  • Davies, P., C. Morvan, O. Sire, and C. Baley. 2007. Structure and Properties of Fibres from Sea-grass (Zostera marina). Journal of Materials Science 42 (13):4850–57. doi:10.1007/s10853-006-0546-1.
  • Dicker, M. P. M., P. F. Duckworth, A. B. Baker, G. Francois, M. K. Hazzard, and P. M. Weaver. 2014. Green composite: A review of materila attributes and complementary applications. Composite-Part A: Applied Science and Manufacture 56:280–89. doi:10.1016/j.compositesa.2013.10.014.
  • Dransfield, J., N. W. Uhl, C. B. Asmussen-Lange, W. J. Baker, M. M. Harley, and C. E. Lewis. 2005. A New Phylogenetic Classification of the Palm Family, Arecaceae. Kew Bulletin 60 (4):559–69. doi:10.2307/25070242.
  • Fathi, L., and A. Frühwald. 2014. The Role of Vascular bundles on the Mechanical Properties of Coconut Palm Wood. Wood Material Science and Engineering 9 (4):1–10. doi:10.1080/17480272.2014.887774.
  • Fathi, L., A. Frühwald, and G. Koch. 2014. Distribution of Lignin in Vascular Bundles of Lignification and Tensile Strength in Single UV-Spectroscopy and Relationship between Coconut Wood (Cocos nucifera) by Cellular Vascular Bundles. Holzforschung 68 (8):915–25. doi:10.1515/hf-2013-0213.
  • Fuqua, M. A., S. Huo, and C. A. Ulven. 2012. Natural Fiber Reinforced Composites. Polym. Rev 52 (3):259–320. doi:10.1080/15583724.2012.705409.
  • Gonzalez, O. M., and K. A. Nguyen. 2016. Cocowood Fibrovascular Tissue System-Another Wonder of Plant Evaolution. Frontiers in Plant Science 7 (1141):1–12. doi:10.3389/fpls.2016.01141.
  • Grosser, D., and W. Liese. 1971. On the Anatomy of Asian Bamboos with Special Reference to their Vascular Bundles. Wood Science and Technology 5 (4):290–312. doi:10.1007/BF00365061.
  • Hakim, L., R. Widyorini, W. D. Nugroho, and T. A. Prayitno. 2019. Anatomical, Chemical, and Mechanical Properties of Fibrovascular Bundles of Salacca (Snake Fruit) Frond. BioResources 14 (2):7943–57. doi:10.15376/biores.14.4.7943-7957.
  • Huang, J., W. Liu, F. Zhou, Y. Peng, and N. Wang. 2016. Mechanical Properties of Maize Fibre Bundles and their Contribution to Lodging Resistance. Biosystems Engineering 151:298–307. doi:10.1016/j.biosystemseng.2016.09.016.
  • Jahan, M. S., D. A. N. Chowdhury, and M. K. Islam. 2006. Characterization and evaluation of golpata fronds as pulping raw materials. Bioresource Technology 3 (97): 401–406. doi:10.1016/j.biortech.2005.04.003
  • Jawaid, M., and H. P. S. A. Khalil. 2011. Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A-review. Carbohydr. Polym 86 (1):1–18. doi:10.1016/j.carbpol.2011.04.043.
  • Li, H., and S. Shen. 2011. The Mechanical Properties of Bamboo and Vascular Bundles. Journal of Materials Science 26 (21):2749–56. doi:10.1557/jmr.2011.314.
  • Li, X., L. G. Tabil, and P. Satyanarayan. 2007. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A-review. J. Polym. Environ 15 (25–33):25–33. doi:10.1007/s10924-006-0042-3.
  • Ma, G., L. Yan, W. Shen, D. Zhu, L. Huang, and B. Kasal. 2018. Effects of Water, Alkali Solution and Temperature Ageing on Water Absorption, Morphology and Mechanical Properties of Natural FRP Composites: Plant-Based Jute vs. Mineral-Based Basalt. Composites: Part B 153 (398):412. doi:10.1016/j.compositesb.2018.09.015.
  • Meindrawan, B., O. Ofe, C. S. Susanto, A. Ayman, D. Mangindaan, and T. P. Kasih. 2020. Glucomannan–Beeswax–Chitosan Antimicrobial Edible Coating to Maintain the Storage Quality of Salak Fruit (Salacca zalacca). Macromol. Symp 391 (1900164):1–5. doi:10.1002/masy.201900164.
  • Mogea, J. P. 1986. A New Spesies in the Genus. Salacca. Principes 30 (4):161–64.
  • Munawar, S. S., K. Umemura, and S. Kawai. 2007. Characterization of the Morphological, Physical, and Mechanical Properties of Seven Nonwood Plant Fiber Bundles. Journal of Wood Science 53 (2):108–13. doi:10.1007/s10086-006-0836-x.
  • Nosbi, N., H. M. Akil, Z. A. M. Ishak, and A. A. Bakar. 2011. Behavior of Kenaf Fibers After Immersion in Several Water Conditions. BioResources 6 (2):950–60.
  • Prof, Z. C., G. Jin, S. Huang, Y. Zhu, S. Li, X. Xie, and D. Li. 2018. Evaluation and Impact Factors of the Mechanical Properties of Phloem Bundle Fibers Obtained from Kenaf Germplasm. Journal of Natural Fibers 15 (2):239–250. doi:10.1080/15440478.2017.1325426.
  • Rafidison, B. G., H. Ramasawmy, J. Chummun, and F. B. V. Florens. 2020. Tree Age, Leaf Maturity and Exposure to Sunlight Influence Tensile Strength of Fibres in Pandanus Utilis. Journal of Natural Fibers 17 (8):1111–20. doi:10.1080/15440478.2018.1558145.
  • Razera, I. A. T., and E. Frollini. 2003. Composites Based on Jute Fibers and Phenolic Matrices: Properties of Fibers and Composites. Journal of Applied Polymer Science 91 (2):1077–85. doi:10.1002/app.13224.
  • Rochardjo, H. S. B., and M. Ridlo. 2019. Effects of Fiber Contents on Wear Resistance of Salacca zalacca Frond Fiber Reinforced Phenolic. Materials Science Forum 948:181–85.
  • Santhoshkumar, R., and K. V. Bath. 2014. Variation in Density and its Relation to Anatomical Properties in Bamboo Culms Bambusa Bambos (L) Voss. Journal of Plant Science 2 (3):108–12. doi:10.11648/j.jps.20140203.12.
  • Satyanarayana, K. G., C. K. S. Pillai, K. Sukumaran, S. G. K. Pillai, P. K. Rohatgi, and K. Vijayan. 1982. Structure Property Studies of Fibres from Various Parts of the Coconut Tree. Journal of Materials Science 17 (8):2453–62. doi:10.1007/BF00543759.
  • Satyanarayana, K. G., G. G. C. Arizaga, and F. Wypych. 2009. Biodegradable Composites Based on Lignocellulosic Fibers-An Overview. Progress in Polymer Science 34:982–1021. doi:10.1016/j.progpolymsci.2008.12.002.
  • Sengupta, S., S. Debnath, P. Ghosh, and I. Mustafa. 2020. Development of Unconventional Fabric from Banana (Musa Acuminata) Fibre for Industrial Uses. Journal of Natural Fibers 17 (8):1212–24. doi:10.1080/15440478.2018.1558153.
  • Supapvanich, S., R. Megia, and P. Ding. 2011. Postharvest Biology and Technology of Tropical and Subtropical Fruits: Mangosteen to White Sapote. In of Salak (Salacca zalacca (Gaertner) Voss), ed. E. M. Yahie, Vol. 4, 334–352. Philadelphia, USA: Woodhead Publishing Limited.
  • Taiwo, O. F. A. W., A. F. M. Alfarkhi, A. Ghazali, and W. W. Daud. 2017. Optimization of the Strength Properties of Waste Oil Palm (Elaeis Guineensis) Fronds Fiber. Journal of Natural Fiber 14 (4):551–63. doi:10.1080/15440478.2016.1215947.
  • Tamunaidu, P. B., and S. Saka. 2011. Chemical Characterization of Various Parts of Nipa Palm (Nypa fruticans). Industrial Crops and Products 34 (3):1423–28. doi:10.1016/j.indcrop.2011.04.020.
  • Tomlinson, P. B., J. B. Fisher, R. E. Spangler, and R. A. Richer. 2001. Stem Vascular Architecture in the Rattan Palm Calamus (arecaceae-calamoideae-calaminae). American Journal of Botany PMID: 11353705. 88 (5):797–809. doi:10.2307/2657032.
  • Wahab, R., A. Mohamed, M. T. Mustafa, and A. Hasan. 2009. Physical Characteristic and Anatomical Properties of Cultivated Bamboo (Bambusa vulgaris Schrad.) culms. Journal of Biological Science 9 (7):753–59. doi:10.3923/jbs.2009.753.759.
  • Wang, N., W. Liua, J. Huanga, and K. Ma. 2014. The Structure-Mechanical Relationship of Palm Vascular Tissue. Journal of the Mechanical Behavior of Biomedical Materials 36:1–11. doi:10.1016/j.jmbbm.2014.04.001.
  • Wang, Y., H. Zhan, Y. Ding, S. Wang, and S. Lin. 2016. Variability of Anatomical and Chemical Properties with Age and Height in Dendrocalamus brandisii. BioResources 11 (1):1202–13. doi:10.15376/biores.11.1.1202-1213.
  • Widyorini, R., K. Umemura, A. Septiano, D. K. Soraya, G. K. Dewi, and W. D. Nugroho. 2018. Manufacture and Properties of Citric Acid-Bonded Composite Board Made from Salacca Frond: Effects of Maltodextrin Addition, Pressing Temperature, and Pressing Method. BioResources 13 (4):8662–76. doi:10.15376/biores.13.4.8662-8676.
  • Widyorini, R., K. Umemura, D. K. Soraya, G. K. Dewi, and W. D. Nugroho. 2019. Effect of Citric Acid Content and Extractives Treatment on the Manufacturing Process and Properties Of Citric Acid-Bonded Salacca Frond Particleboard. BioResources 14 (2):4171–80. doi:10.15376/biores.14.2.4171-4180.
  • Zhai, S., D. Li, B. Pan, J. Sugiyama, and T. Itoh. 2012. Tensile Strength of Windmill Palm (Trachycarpus fortunei) Fiber Bundles and its Structural Implications. Journal of Materials Science 47 (2):949–59. doi:10.1007/s10853-011-5874-0.
  • Zhai, S., T. Imai, Y. Horikawa, and J. Sugiyama. 2013. Anatomical and Mechanical Characteristics of Leaf-Sheath Fibrovascular Bundles in Palms. IAWA Journal 34 (3):285–300. doi:10.1163/22941932-00000024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.