209
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanofibrillated Cellulose Extracted by Enzymatic Hydrolysis Followed by Mechanical Fibrillation

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Abdul Khalil, H. P. S., Y. Davoudpour, M. N. Islam, A. Mustapha, K. Sudesh, R. Dungani, and M. Jawaid. 2014. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers 99:649–65. doi:10.1016/j.carbpol.2013.08.069.
  • Abitbol, T., A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, S. Lapidot, and O. Shoseyov. 2016. Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology 39 (I):76–88. doi:10.1016/j.copbio.2016.01.002.
  • Baati, R., A. Magnin, and S. Boufi. 2017. High solid content production of nanofibrillar cellulose via continuous extrusion. ACS Sustainable Chemistry & Engineering 5 (3):2350–59. doi:10.1021/acssuschemeng.6b02673.
  • Cardoso, G. V., L. R. Di Salvo Mello, P. Zanatta, S. Cava, C. W. Raubach, and M. L. Moreira. 2018. Physico-chemical description of titanium dioxide–cellulose nanocomposite formation by microwave radiation with high thermal stability. Cellulose 25 (4):2331–41. doi:10.1007/s10570-018-1734-2.
  • Cebreiros, F., S. Seiler, S. S. Dalli, C. Lareo, and J. Saddler. 2021. Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments. Cellulose 28 (1):189–206. doi:10.1007/s10570-020-03531-w.
  • Chu, Y., Y. Sun, W. Wu, and H. Xiao. 2020. Dispersion properties of nanocellulose: A review. Carbohydrate Polymers 250:116892. doi:10.1016/j.carbpol.2020.116892.
  • Claro, F. C., M. Matos, C. Jordão, F. Avelino, D. Lomonaco, and W. L. E. Magalhães. 2019. Enhanced microfibrillated cellulose-based film by controlling the hemicellulose content and MFC rheology. Carbohydrate Polymers 218 (May):307–14. doi:10.1016/j.carbpol.2019.04.089.
  • Dai, Z., V. Ottesen, J. Deng, R. M. L. Helberg, and L. Deng. 2019. A brief review of nanocellulose based hybrid. Fibers, Figure 1:1–18.
  • De Aguiar, J., T. J. Bondancia, P. I. C. Claro, L. H. C. Mattoso, C. S. Farinas, and J. M. Marconcini. 2020. Enzymatic deconstruction of sugarcane bagasse and straw to obtain cellulose nanomaterials. ACS Sustainable Chemistry & Engineering 8 (5):2287–99. doi:10.1021/acssuschemeng.9b06806.
  • De Campos, A., A. C. Correa, D. Cannella, E. de M Teixeira, J. M. Marconcini, A. Dufresne, L. H. C. Mattoso, P. Cassland, and A. R. Sanadi. 2013. Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20 (3):1491–500. doi:10.1007/s10570-013-9909-3.
  • De Delucis, R. A., P. H. G. Cademartori, A. R. Fajardo, and S. C. Amico. 2021. Cellulose and its derivatives: Properties and Applications. In Polysaccharides, 221–52. Eds: Inamuddin,Mohd Imran Ahamed,Rajender Boddula,Tariq Altalhi, Wiley. doi:10.1002/9781119711414.ch11
  • Flauzino Neto, W. P., H. A. Silvério, N. O. Dantas, and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Industrial Crops and Products 42:480–88. doi:10.1016/j.indcrop.2012.06.041.
  • Guo, X., L. Liu, J. Wu, J. Fan, and Y. Wu. 2018. Qualitatively and quantitatively characterizing water adsorption of a cellulose nanofiber film using micro-FTIR spectroscopy. RSC Advances 8 (8):4214–20. doi:10.1039/C7RA09894D.
  • Han, X., R. Bi, H. Oguzlu, M. Takada, J. Jiang, F. Jiang, J. Bao, and J. N. Saddler. 2020. Potential to produce sugars and lignin-containing cellulose nanofibrils from enzymatically hydrolyzed chemi-thermomechanical pulps. ACS Sustainable Chemistry & Engineering 8 (39):14955–63. doi:10.1021/acssuschemeng.0c05183.
  • Henriksson, M., G. Henriksson, L. A. Berglund, and T. Lindström. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal 43 (8):3434–41. doi:10.1016/j.eurpolymj.2007.05.038.
  • Kargarzadeh, H., M. Ioelovich, I. Ahmad, S. Thomas, and A. Dufresne. 2017. Methods for extraction of nanocellulose from various sources. Handbook of Nanocellulose and Cellulose Nanocomposites 1–49. doi:10.1002/9783527689972.ch1.
  • Kerche, E. F., D. N. Bock, R. De Avila Delucis, W. L. E. Magalhães, and S. C. Amico. 2021. Micro fibrillated cellulose reinforced bio-based rigid high-density polyurethane foams. Cellulose 28 (7):4313–26. doi:10.1007/s10570-021-03801-1.
  • Khan, A., K. D. Vu, G. Chauve, J. Bouchard, B. Riedl, and M. Lacroix. 2014. Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose 21 (5):3457–68. doi:10.1007/s10570-014-0361-9.
  • Lavoine, N., and L. Bergström. 2017. Nanocellulose-based foams and aerogels: Processing, properties, and applications. Journal of Materials Chemistry A 5 (31):16105–17. doi:10.1039/c7ta02807e.
  • Lee, K. Y., Y. Aitomäki, L. A. Berglund, K. Oksman, and A. Bismarck. 2014. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology 105:15–27. doi:10.1016/j.compscitech.2014.08.032.
  • Li, J., R. Cha, K. Mou, X. Zhao, K. Long, H. Luo, F. Zhou, and X. Jiang. 2018. Nanocellulose-based antibacterial materials. Advanced Healthcare Materials 7 (20):1–16. doi:10.1002/adhm.201800334.
  • Liu, X., Y. Jiang, X. Song, C. Qin, S. Wang, and K. Li. 2019. A bio-mechanical process for cellulose nanofiber production – Towards a greener and energy conservation solution. Carbohydrate Polymers 208:191–99. doi:10.1016/j.carbpol.2018.12.071.
  • López-Rubio, A., J. M. Lagaron, M. Ankerfors, T. Lindström, D. Nordqvist, A. Mattozzi, and M. S. Hedenqvist. 2007. Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydrate Polymers 68 (4):718–27. doi:10.1016/j.carbpol.2006.08.008.
  • Makarem, M., C. M. Lee, K. Kafle, S. Huang, I. Chae, H. Yang, J. D. Kubicki, and S. H. Kim. 2019. Probing cellulose structures with vibrational spectroscopy. In Cellulose, 26 (1): 35–79. Springer Netherlands. doi:10.1007/s10570-018-2199-z
  • Mautner, A., K. Y. Lee, T. Tammelin, A. P. Mathew, A. J. Nedoma, K. Li, and A. Bismarck. 2015. Cellulose nanopapers as tight aqueous ultra-filtration membranes. Reactive & Functional Polymers 86:209–14. doi:10.1016/j.reactfunctpolym.2014.09.014.
  • Pääkko, M., M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala, et al. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8 (6):1934–41. doi:10.1021/bm061215p.
  • Pakutsah, K., and D. Aht-Ong. 2020. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties. International Journal of Biological Macromolecules 145:64–76. doi:10.1016/j.ijbiomac.2019.12.172.
  • Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3:1–10. doi:10.1186/1754-6834-3-10.
  • Poletto, M., V. Pistor, R. M. C. Santana, and A. J. Zattera. 2012. Materials produced from plant biomass. part II: Evaluation of crystallinity and degradation kinetics of cellulose. Materials Research 15 (3):421–27. doi:10.1590/S1516-14392012005000048.
  • Portela, R., C. R. Leal, P. L. Almeida, and R. G. Sobral. 2019. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microbial Biotechnology 12 (4):586–610. doi:10.1111/1751-7915.13392.
  • Qi, X., J. Chu, L. Jia, and A. Kumar. 2019. Influence of different pretreatments on the structure and hydrolysis behavior of bamboo: A comparative study. Materials 12 (16):1–14. doi:10.3390/ma12162570.
  • Ravindran, R., and A. K. Jaiswal. 2016. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource Technology 199:92–102. doi:10.1016/j.biortech.2015.07.106.
  • Santmarti, A., T. Tammelin, and K. Y. Lee. 2020. Prevention of interfibril hornification by replacing water in nanocellulose gel with low molecular weight liquid poly(ethylene glycol). Carbohydrate Polymers 250 (August):116870. doi:10.1016/j.carbpol.2020.116870.
  • Siddiqui, N., R. H. Mills, D. J. Gardner, and D. Bousfield. 2010. Production and characterization of cellulose nanofibers from wood pulp. Journal of Adhesion Science and Technology 25 (6–7):709–21. doi:10.1163/016942410X525975.
  • Singh, T., and A. P. Singh. 2012. A review on natural products as wood protectant. Wood Science and Technology 46 (5):851–70. doi:10.1007/s00226-011-0448-5.
  • Siqueira, G., S. Tapin-Lingua, J. Bras, D. Da Silva Perez, and A. Dufresne. 2010. Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17 (6):1147–58. doi:10.1007/s10570-010-9449-z.
  • Sun, X. F., F. Xu, R. C. Sun, P. Fowler, and M. S. Baird. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research 340 (1):97–106. doi:10.1016/j.carres.2004.10.022.
  • Tang, C., Y. Chen, J. Luo, M. Y. Low, Z. Shi, J. Tang, Z. Zhang, B. Peng, and K. C. Tam. 2019. Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics. Cellulose 26 (13–14):7753–67. doi:10.1007/s10570-019-02648-x.
  • Tanpichai, S., F. Quero, M. Nogi, H. Yano, R. J. Young, T. Lindström, W. W. Sampson, and S. J. Eichhorn. 2012. Effective young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13 (5):1340–49. doi:10.1021/bm300042t.
  • Torstensen, J., R. M. L. Helberg, L. Deng, Ø. W. Gregersen, and K. Syverud. 2019. PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas. International Journal of Greenhouse Gas Control 81 ( June2018):93–102. doi:10.1016/j.ijggc.2018.10.007.
  • Wang, H., D. Li, H. Yano, and K. Abe. 2014. Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21 (3):1505–15. doi:10.1007/s10570-014-0222-6.
  • Wang, W., M. D. Mozuch, R. C. Sabo, P. Kersten, J. Y. Zhu, and Y. Jin. 2015. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose 22 (1):351–61. doi:10.1007/s10570-014-0465-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.