112
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Natural Cellulosic Fiber from Coccinia Grandis Root

, &

References

  • Akerholm, M., B. Hinterstoisser, and L. Salmen. 2004. Characterization of the crystalline structures of cellulose using static and dynamic FTIR spectroscopy. Carbohydrate Resource 339 (3):569–78. doi:10.1016/j.carres.2003.11.012.
  • Arul Marcel Moshi, A., D. Ravindran, S. R. S. Bharathi, S. Indran, S. S. Saravanakumar, and Y. Liu. 2019. Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules 142:212–21. doi:10.1016/j.ijbiomac.2019.09.094.
  • Azwa, Z. N., B. F. Yousif, A. C. Manalo, and W. Karunasena. 2013. A review on the degradability of polymeric composites based on natural fibers. Materials & Design 47:424–42. doi:10.1016/j.matdes.2012.11.025.
  • Beakou, A., R. Ntenga, J. Lepetit, J. A. Ateiba, and L. O. Ayina. 2008. Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Composites Part A: Applied Science and Manufacturing 39 (1):67–74. doi:10.1016/j.compositesa.2007.09.002.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Binoj, J. S., R. Edwin Raj, V. S. Sreenivasan, and G. Rexin Thusnavis. 2016. Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering 13 (1):156–65. doi:10.1016/S1672-6529(14)60170-0.
  • Boopathi, L., P. S. Sampath, and K. Mylsamy. 2012. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fibers. Composites Part B: Engineering 43 (8):3044–52. doi:10.1016/j.compositesb.2012.05.002.
  • Conrad, C. M. 1944. Determination of wax in cotton fiber: A new alcohol extraction method. Industrial and Engineering Chemistry, Analytical Edition 16 (12):745–48. doi:10.1021/i560136a007.
  • D’Almeida, J. R. M., R. C. M. P. Aquino, and S. N. Monteiro. 2006. Tensile mechanical properties, morphological aspects and chemical characterization of piassava(Attala funifera) fibers. Composites Part A: Applied Science and Manufacturing 37 (9):1473–79. doi:10.1016/j.compositesa.2005.03.035.
  • Das, M., and D. Chakrabarty. 2008. Thermo gravimetric analysis and weathering study by water immersion of alkali-treated bamboo strips. BioResource 3:1051–62.
  • De Rosa, I. M., J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini. 2010. Morphological, thermal and mechanical characterization of okra (abelmoschus esculentus) fibers as potential reinforcement in polymer composites. Composites Science and Technology 70 (1):116–22. doi:10.1016/j.compscitech.2009.09.013.
  • Elenga, R. G., G. F. Dirras, J. Goma Maniongui, P. Djemia, and M. P. Biget. 2009. On the microstructure and physical properties of untreated raffia textilis fiber. Composites Part A: Applied Science and Manufacturing 40 (4):418–22. doi:10.1016/j.compositesa.2009.01.001.
  • Faruk, O., A. K. Bledzkia, H. Finkb, and M. Sain. 2012. Biocomposites reinforced with natural fibers. Progress in Polymer Science 37:1552–96.
  • Ganapathy, T., R. Sathiskumar, P. Senthamaraikannan, S. S. Saravanakumar, and A. Khan. 2019. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules 138:573–81. doi:10.1016/j.ijbiomac.2019.07.136.
  • Ganeshan, P., B. Nagaraja Ganesh, P. Ramshankar, and K. Raja. 2018. Calotropis gigantea fibers – A potential reinforcement for polymer matrices. International Journal of Polymer Analysis and Characterization 23 (3):271–77. doi:10.1080/1023666X.2018.1439560.
  • Garette Jebadurai, S., R. Edwin Raj, V. S. Sreenivasan, and J. S. Binoj. 2019. Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem. Carbohydrate Polymers 207:675–83. doi:10.1016/j.carbpol.2018.12.027.
  • Hindeleh, A. M., and D. J. Johnson. 1980. An empirical estimation of Scherrer parameters for the estimation of the crystallite size in fibrous polymers. Polymer 21 (8):929–35. doi:10.1016/0032-3861(80)90250-5.
  • Indran, S., and R. Edwin Raj. 2015. Characterization of new natural cellulosic fiber from cissus quadrangularis stem. Carbohydrate Polymers 117:392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Indran, S., R. Edwin Raj, and V. S. Sreenivasan. 2014. Characterization of a new natural cellulosic fiber from cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • Ishikawa, A., T. Okano, and J. Sugiyama. 1997. Fine structure and tensile properties of ramies in the crystalline form of cellulose I, II, III and IV. Polymer 38 (2):463–68. doi:10.1016/S0032-3861(96)00516-2.
  • Jawaid, M., and H. P. S. Abdul Khalil. 2011. Cellulosic synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers 86 (1):1–18. doi:10.1016/j.carbpol.2011.04.043.
  • Jayaramudu, J., B. R. Guduri, and A. Varada Rajulu. 2010. Characterization of new natural cellulosic fabric grewia tilifolia. Carbohydrate Polymers 79 (4):847–51. doi:10.1016/j.carbpol.2009.10.046.
  • Kathirselvam, M., A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar. 2019. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate Polymers 217:178–89. doi:10.1016/j.carbpol.2019.04.063.
  • Kurschner, K., and A. Hoffer. 1933. Cellulose and cellulose derivative. Fresenius’ Journal of Analytical Chemistry 92 (3):145–54.
  • Liu, D., G. Han, J. H. Huang, and Y. Zhang. 2009. Composition and structure study of natural Nelumbo nucifera fiber. Carbohydrate Polymers 75 (1):39–43. doi:10.1016/j.carbpol.2008.06.003.
  • Liu, W., A. K. Mohanty, L. T. Drzal, P. Askel, and M. Misra. 2004. Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. Journal of Material Science 39 (3):1051–54. doi:10.1023/B:JMSC.0000012942.83614.75.
  • Manimaran, P., M. R. Sanjay, P. Senthamaraikannan, M. Jawaid, S. S. Saravanakumar, and R. George. 2019. Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications. Journal of Natural Fibers 16 (5):768–80. doi:10.1080/15440478.2018.1434851.
  • Mayandi, K., N. Rajini, P. Pitchipoo, V. S. Sreenivasan, J. T. Winowlin Jappes, and A. Alavudeen. 2015. A comparative study on characterisations of Cissus quadrangularis and Phoenix reclinata natural fibres. Journal of Reinforced Plastics & Composites 34 (4):269–80. doi:10.1177/0731684415570045.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute and kapok fibers by alkalisation. Journal of Applied Polymer Science 84 (12):2222–23. doi:10.1002/app.10460.
  • O’ Brien, T. P., N. Feder, and M. E. Mc Cull. 1964. Polychromatic staining of plant cell walls by toluidineblue O. Protoplasma 59 (2):364–73. doi:10.1007/BF01248568.
  • Obi Reddy, K., R. N. Reddy, K. Jun Zhang, J. Zhang, and A. V. Rajulu. 2013. Effect of alkali treatment on the properties of century fiber. Journal of Natural Fibers 10 (3):282–96. doi:10.1080/15440478.2013.800812.
  • Pearl, I. A. 1967. The chemistry of lignin. New York: Marcel Dekker.
  • Qin, C., N. Soykeabkaew, N. Xiuyuan, and T. Peijs. 2008. The effect of fibre volume fraction and mercerization on the properties of all cellulose composites. Carbohydrate Polymers 71 (3):458–67. doi:10.1016/j.carbpol.2007.06.019.
  • Rao, K. M. M., and K. M. Rao. 2007. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Journal of Composite Structures 77 (3):288–95. doi:10.1016/j.compstruct.2005.07.023.
  • Reddy, K. O., B. Ashok, K. R. N. Reddy, Y. Feng, J. Zhang, and A. V. Rajulu. 2014. Extraction and characterization of novel Lignocellulosic fibers from Thespesia Lampas plant. International Journal of Polymer Analysis and Characterization 19 (1):48–61. doi:10.1080/1023666X.2014.854520.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from prosopis juliflora bark. Carbohydrate Polymers 92 (2):1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Sargianis, J. J., K. Hyung-Ick, E. Andrews, and J. Suhr. 2013. Sound and vibration damping characteristics in natural material based sandwich composites. Composite Structures 96:538–44. doi:10.1016/j.compstruct.2012.09.006.
  • Sass, J. E. 1940. Elements of botanical micro technique. New York and London: Mc Graw-Hill book co.
  • Seki, Y., M. Sarikanat, K. Sever, and C. Durmuşkahya. 2013. Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Composites Part B: Engineering 44 (1):517–23. doi:10.1016/j.compositesb.2012.03.013.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Micro structural and physico-chemical and mechanical characterization of sansevieria cylindrica fibers-an exploratory investigation. Materials & Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Subramanian, K., P. S. Kumar, P. Jeyapal, and N. Venkatesh. 2005. Characterization of lignocellulosic seed fiber from Wrightia tinctoria plant for textile applications – An exploratory investigation. European Polymer Journal 41 (4):853–61. doi:10.1016/j.eurpolymj.2004.10.037.
  • Tran, L. Q. N., C. A. Fuentes, C. Dupont-Gillain, A. W. Van Vuure, and I. Verpoest. 2011. Wetting analysis and surface characterisation of coir fibres used as reinforcement for composites. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 377 (1–3):251–60. doi:10.1016/j.colsurfa.2011.01.023.
  • Wong Sak Hoi, L., and B. S. Martincigh. 2013. Sugar cane plant fibres: Separation and characterization. Industrial Crops and Products 47:1–12. doi:10.1016/j.indcrop.2013.02.017.
  • Zhbankov, R. G., S. P. Firsov, D. K. Buslov, N. A. Nikonenko, M. K. Machewka, and H. Ratajczak. 2002. Structural physico-chemistry of cellulose macro molecules. Vibrational spectra and structures of cellulose. Journal of Molecular Structure 614 (13):117–25. doi:10.1016/S0022-2860(02)00252-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.