524
Views
3
CrossRef citations to date
0
Altmetric
Review

A Review of Flax Fiber Reinforced Thermoset Polymer Composites: Structure and Mechanical Performance

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all

References

  • Abd, M. A., M. A. Attia, M. M. Abdelhaleem, and M. A. Hassan. 2020. Mechanical characterization of hybrid composites based on flax, basalt and glass fibers. Journal of Composite Materials 54 (27):4185–205. doi:10.1177/0021998320928509.
  • Abida, M., J. Mars, F. Gehring, A. Vivet, and F. Dammak. 2018. Anisotropic visco-elastoplastic modeling of quasi-unidirectional flax fiber reinforced epoxy behavior: An Investigation on low-velocity impact response. Journal of Renewable Materials 6 (5):464–76. doi:10.32604/jrm.2018.01897.
  • Ahmad, F., N. Yuvaraj, and P. K. Bajpai. 2021. Influence of reinforcement architecture on static and dynamic mechanical properties of flax/epoxy composites for structural applications. Composite Structures 255:112955. doi:10.1016/j.compstruct.2020.112955.
  • Al-Hajaj, Z., A. Sarwar, R. Zdero, and H. Bougherara. 2019a. In-situ damage assessment of a novel carbon/flax/epoxy hybrid composite under tensile and compressive loading. Journal of Composite Materials 53 (19):2701–14. doi:10.1177/0021998319839129.
  • Al-Hajaj, Z., B. L. Sy, H. Bougherara, and R. Zdero. 2019b. Impact properties of a new hybrid composite material made from woven carbon fibres plus flax fibres in an epoxy matrix. Composite Structures 208:346–56. doi:10.1016/j.compstruct.2018.10.033.
  • Al-Maadeed, M. A., and S. Labidi. 2014. Recycled polymers in natural fibre-reinforced polymer composites. In Natural fibre composites, eds. Hodzic, Alma, and Shanks, Robert, 103–14 . Woodhead. https://doi.org/10.1533/9780857099228.1.103
  • Alix, S., E. Philippe, A. Bessadok, L. Lebrun, C. Morvan, and S. Marais. 2009. Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresource Technology 100 (20):4742–49. doi:10.1016/j.biortech.2009.04.067.
  • Ameri, E., L. Laperrière, and G. Lebrun. 2016. Mechanical characterization and optimization of a new unidirectional flax/paper/epoxy composite. Composites Part B: Engineering 97:282–91. doi:10.1016/j.compositesb.2016.04.056.
  • Arun, P. K., P. Amuthakkannan, V. Arumugaprabu, and V. Manikandan. 2019. Low velocity impact and compression after impact damage responses on flax/basalt fiber hybrid composites. Materials Research Express 6 (11). doi: 10.1088/2053-1591/ab43f4.
  • Ashori, A., S. Sheshmani, and F. Farhani. 2013. Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes. Carbohydrate Polymers 92 (1):865–71. doi:10.1016/j.carbpol.2012.10.010.
  • Atmakuri, A., A. Palevicius, P. Griskevicius, and G. Janusas. 2019. Investigation of mechanical properties of hemp and flax fibers hybrid composites for biomedical applications. Mechanika 25 (2):149–55. doi:10.5755/j01.mech.25.2.22712.
  • Audibert, C., A.-S. Andreani, É. Lainé, and J.-C. Grandidier. 2018. Mechanical characterization and damage mechanism of a new flax-Kevlar hybrid/epoxy composite. Composite Structures 195:126–35. doi:10.1016/j.compstruct.2018.04.061.
  • Azwa, Z. N., B. F. Yousif, A. C. Manalo, and W. Karunasena. 2013. A review on the degradability of polymeric composites based on natural fibres. Materials & Design 47:424–42. doi:10.1016/j.matdes.2012.11.025.
  • Bachmann, J., M. Wiedemann, and P. Wierach. 2018. Flexural mechanical properties of hybrid epoxy composites reinforced with nonwoven made of flax fibres and recycled carbon fibres. Aerospace 5 (4):107. doi:10.3390/aerospace5040107.
  • Baley, C., A. Bourmaud, and P. Davies. 2021. Eighty years of composites reinforced by flax fibres: A historical review. Composites Part a-Applied Science and Manufacturing 144:106333. doi:10.1016/j.compositesa.2021.106333.
  • Baley, C., C. Goudenhooft, P. Perre, L. Pin, F. Pierre, and A. Bourmaud. 2019. Compressive strength of flax fibre bundles within the stem and comparison with unidirectional flax/epoxy composites. Industrial Crops and Products 130:25–33. doi:10.1016/j.indcrop.2018.12.059.
  • Baley, C., M. Gomina, J. Breard, A. Bourmaud, S. Drapier, M. Ferreira, A. Le Duigou, P. J. Liotier, P. Ouagne, and D. Soulat. 2019. Specific features of flax fibres used to manufacture composite materials. International Journal of Material Forming 12(6): 1023–52. doi:10.1007/s12289-018-1455-y.
  • Baley, C. 2002. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites. Part A, Applied Science and Manufacturing 33 (7):939–48. doi:10.1016/S1359-835X(02)00040-4.
  • Bambach, M. R. 2020. Direct comparison of the structural compression characteristics of natural and synthetic fiber-epoxy composites: flax, jute, hemp, glass and carbon fibers. Fibers 8 (10):62. doi:10.3390/fib8100062.
  • Barczewski, M., D. Matykiewicz, and M. Szostak. 2020. The effect of two-step surface treatment by hydrogen peroxide and silanization of flax/cotton fabrics on epoxy-based laminates thermomechanical properties and structure. Journal of Materials Research and Technology-Jmr&T 9 (6):13813–24. doi:10.1016/j.jmrt.2020.09.120.
  • Baseer, A. A., D. V. Ravi Shankar, and M. Manzoor Hussain. 2020. INTERFACIAL AND TENSILE PROPERTIES OF HYBRID FRP COMPOSITES USING DNN STRUCTURE WITH OPTIMIZATION MODEL. Surface Review and Letters 27 (2):1950099. doi:10.1142/s0218625x19500999.
  • Batra SK.et al 1998. Other long vegetable fibers. In: Lewin M, and Pearce EM, editors. Handbook of fibre science and technology. Fibre chemistry. New York: Marcel Dekker. 4:505–75.
  • Bedzra, R., S. Reese, and J.-W. Simon. 2020. Hierarchical multi-scale modelling of flax fibre/epoxy composite by means of general anisotropic viscoelastic-viscoplastic constitutive models: Part I - Micromechanical model. International Journal of Solids and Structures 202:58–74. doi:10.1016/j.ijsolstr.2020.05.020.
  • Bensadoun, F., D. Depuydt, J. Baets, I. Verpoest, and A. W. Van Vuure. 2017. Low velocity impact properties of flax composites. Composite Structures 176:933–44. doi:10.1016/j.compstruct.2017.05.005.
  • Blanchard, J. M. F. A., U. Mutlu, A. J. Sobey, and J. I. R. Blake. 2019. Modelling the different mechanical response and increased stresses exhibited by structures made from natural fibre composites. Composite Structures 215:402–10. doi:10.1016/j.compstruct.2019.02.042.
  • Bos, H. L., J. Müssig, and M. J. A. van Den Oever. 2006. Mechanical properties of short-flax-fibre reinforced compounds. Composites. Part A, Applied Science and Manufacturing 37 (10):1591–604. doi:10.1016/j.compositesa.2005.10.011.
  • Bos, H. L., K. Molenveld, W. Teunissen, A. M. van Wingerde, and D. R. V. van Delft. 2004. Compressive behaviour of unidirectional flax fibre reinforced composites. Journal of Materials Science 39 (6):2159–68. doi:10.1023/B:JMSC.0000017779.08041.49.
  • Bossuyt, V. 1941. “Etude de la structure et des propriétés mécaniques de la fibre de lin.”
  • Campana, C., R. Leger, R. Sonnier, L. Ferry, and P. Ienny. 2018. Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Composites Part a-Applied Science and Manufacturing 107:171–79. doi:10.1016/j.compositesa.2017.12.029.
  • Carus, M. 2011. Bio-composites: Technologies, applications and markets. Paper presented at the 4th International Conference on Sustainable Materials, Polymers and Composites Birmingham, UK.
  • Chandrasekar, M., R. M. Shahroze, M. R. Ishak, N. Saba, M. Jawaid, K. Senthilkumar, T. Senthil Muthu Kumar, and S. Siengchin. 2019. Flax and sugar palm reinforced epoxy composites: Effect of hybridization on physical, mechanical, morphological and dynamic mechanical properties. Materials Research Express 6 (10):105331. doi:10.1088/2053-1591/ab382c.
  • Charlet, K., C. Baley, C. Morvan, J. P. Jernot, M. Gomina, and J. Bréard. 2007. Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Composites. Part A, Applied Science and Manufacturing 38 (8):1912–21. doi:10.1016/j.compositesa.2007.03.006.
  • Chaudhary, V., P. K. Bajpai, and S. Maheshwari. 2018. Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications. Journal of Natural Fibers 15 (1):80–97. doi:10.1080/15440478.2017.1320260.
  • Chauhan, V., T. Kärki, and J. Varis. 2019. Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials 0 (0): 892705719889095. doi:10.1177/0892705719889095.
  • Cristaldi, G., A. Latteri, G. Recca, and G. Cicala. 2010. Composites based on natural fibre fabrics. Woven Fabric Engineering 17:317–42.
  • Cuynet, A., D. Scida, É. Roux, F. Toussaint, R. Ayad, and M. Lagache. 2018. Damage characterisation of flax fibre fabric reinforced epoxy composites during low velocity impacts using high-speed imaging and Stereo Image Correlation. Composite Structures 202:1186–94. doi:10.1016/j.compstruct.2018.05.090.
  • De Rosa, I., C. S. Maria, and F. Sarasini. 2010. Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Materials & Design (1980-2015) 31 (5):2397–405. doi:10.1016/j.matdes.2009.11.059.
  • Decorme, J., A. Duval, E. Vanfleteren, and F. Vanfleteren. 2014. Method for producing a continuous web of fibers comprising long natural fibers, and associated apparatus and web . In U.S. Patent Application 14/356,457.
  • Dhakal, H. N., H. Ghasemnejad, Z. Y. Zhang, S. O. Ismail, and V. Arumugam. 2019. The post-impact response of flax/UP composite laminates under low velocity impact loading. International Journal of Damage Mechanics 28 (2):183–99. doi:10.1177/1056789517751239.
  • Dicker, M. P. M., P. F. Duckworth, A. B. Baker, G. Francois, and M. K. Hazzard, Paul M %J Composites part A: applied science Weaver, and manufacturing. 2014. Green composites: A review of material attributes and complementary applications. 56:280–89 https://doi.org/10.1016/j.compositesa.2013.10.014
  • Dissanayake, N. P. J., J. Summerscales, S. M. Grove, and M. M. Singh. 2009. Energy use in the production of flax fiber for the reinforcement of composites. Journal of Natural Fibers 6 (4):331–46. doi:10.1080/15440470903345784.
  • Dittenber, D. B., and V. S. Hota. %J Composites Part A: applied science GangaRao, and manufacturing. 2012. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing. 43 (8):1419–29. .
  • Duc, F., P. E. Bourban, C. J. G. Plummer, and J. A. E. Manson. 2014. Damping of thermoset and thermoplastic flax fibre composites. Composites Part a-Applied Science and Manufacturing 64:115–23. doi:10.1016/j.compositesa.2014.04.016.
  • Eichhorn, S. J., C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell, A. Dufresne, K. M. Entwistle, P. J. Herrera-Franco, G. C. Escamilla, and L. Groom. 2001. Current international research into cellulosic fibres and composites. Journal of Materials Science 36 (9):2107–31. doi:10.1023/A:1017512029696.
  • Faruk, O., A. K. Bledzki, H.-P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 37 (11):1552–96.
  • Fiore, V., A. Valenza, and G. Di Bella. 2012. Mechanical behavior of carbon/flax hybrid composites for structural applications. Journal of Composite Materials 46 (17):2089–96. doi:10.1177/0021998311429884.
  • Flynn, Jeff, Ali Amiri, and Chad Ulven. 2016. “Hybridized carbon and flax fiber composites for tailored performance.” Materials & Design 102:21–9. doi: https://doi.org/10.1016/j.matdes.2016.03.164.
  • Fragassa, C., A. Pavlovic, and C. Santulli. 2018. Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids. Composites Part B: Engineering 137:247–59. doi:10.1016/j.compositesb.2017.01.004.
  • Francucci, G., S. Palmer, and W. Hall. 2018. External compaction pressure over vacuum-bagged composite parts: Effect on the quality of flax fiber/epoxy laminates. Journal of Composite Materials 52 (1):3–15. doi:10.1177/0021998317701998.
  • Fuqua, M. A., and S. Huo. Chad A %J Polymer Reviews Ulven. 2012. Natural fiber reinforced composites. Polymer Reviews 52(3):259–320. doi:10.1080/15583724.2012.705409.
  • Gurunathan, T., and S. Mohanty, Sanjay K %J Composites Part A: Applied Science Nayak, and Manufacturing. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. 77:1–25. doi: https://doi.org/10.1016/j.compositesa.2015.06.007.
  • Habibi, M., G. Lebrun, and L. Luc. 2017. Experimental characterization of short flax fiber mat composites: Tensile and flexural properties and damage analysis using acoustic emission. Journal of Materials Science 52 (11):6567–80. doi:10.1007/s10853-017-0892-1.
  • Habibi, M., L. Laperriere, G. Lebrun, and L. Toubal. 2017. Combining short flax fiber mats and unidirectional flax yarns for composite applications: Effect of short flax fibers on biaxial mechanical properties and damage behaviour. Composites Part B: Engineering 123:165–78. doi:10.1016/j.compositesb.2017.05.023.
  • Habibi, M., S. Selmi, L. Laperrière, H. Mahi, and S. Kelouwani. 2019a. Experimental investigation on the response of unidirectional flax fiber composites to low-velocity impact with after-impact tensile and compressive strength measurement. Composites Part B: Engineering 171:246–53. doi:10.1016/j.compositesb.2019.05.011.
  • Habibi, M., S. Selmi, L. Laperrière, H. Mahi, and S. Kelouwani. 2019b. Post-impact compression behavior of natural flax fiber composites. Journal of Natural Fibers 1–9. doi:10.1080/15440478.2019.1588829.
  • Huang, X. Anil %J Composites Science Netravali, and Technology. 2007. Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. 67 (10):2005–14.
  • Islam, M. Z., and C. A. Ulven. 2020. A thermographic and energy based approach to define high cycle fatigue strength of flax fiber reinforced thermoset composites. Composites Science and Technology 196:108233. doi:10.1016/j.compscitech.2020.108233.
  • John, M. J., and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71 (3):343–64. doi:10.1016/j.carbpol.2007.05.040.
  • Keck, S., and M. Fulland. 2019. Effect of fibre volume fraction and fibre direction on crack paths in unidirectional flax fibre-reinforced epoxy composites under static loading. Theoretical and Applied Fracture Mechanics 101:162–68. doi:10.1016/j.tafmec.2019.01.028.
  • Khalfallah, M., B. Abbès, F. Abbès, Y. Q. Guo, V. Marcel, A. Duval, F. Vanfleteren, and F. Rousseau. 2014. Innovative flax tapes reinforced Acrodur biocomposites: A new alternative for automotive applications. Materials & Design 64:116–26. doi:10.1016/j.matdes.2014.07.029.
  • Khalil, H. P. S. Abdul, H. D. Rozman, M. N. Ahmad, and H. Ismail. 2000. “ACETYLATED PLANT-FIBER-REINFORCED POLYESTER COMPOSITES: A STUDY OF MECHANICAL, HYGROTHERMAL, AND AGING CHARACTERISTICS.” Polymer-Plastics Technology and Engineering 39 (4):757–81. doi: 10.1081/PPT-100100057.
  • Kureemun, U., A. Haris, W. S. Teo, L. Q. N. Tran, and H. P. Lee. 2018a. Influence of ply blocking on tensile stiffness in woven flax-carbon hybrids. Journal of Reinforced Plastics and Composites 37 (9):583–91. doi:10.1177/0731684418754712.
  • Kureemun, U., M. Ravandi, L. Q. N. Tran, W. S. Teo, T. E. Tay, and H. P. Lee. 2018b. Effects of hybridization and hybrid fibre dispersion on the mechanical properties of woven flax-carbon epoxy at low carbon fibre volume fractions. Composites Part B-Engineering 134:28–38. doi:10.1016/j.compositesb.2017.09.035.
  • Lachaud, F., M. Boutin, C. Espinosa, and D. Hardy. 2021. Failure prediction of a new sandwich panels based on flax fibres reinforced epoxy bio-composites. Composite Structures 257:113361. doi:10.1016/j.compstruct.2020.113361.
  • Le Gall, M., P. Davies, N. Martin, and C. Baley. 2018. Recommended flax fibre density values for composite property predictions. Industrial Crops and Products 114:52–58. doi:10.1016/j.indcrop.2018.01.065.
  • Lebrun, G., A. Couture, and L. Laperrière. 2013. Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites. Composite Structures 103:151–60. doi:10.1016/j.compstruct.2013.04.028.
  • Li, Y., J. Zhong, and F. Kunkun. 2020. Low-velocity impact and compression-after-impact behaviour of flax fibre-reinforced composites. Acta Mechanica Solida Sinica 33 (4):431–48. doi:10.1007/s10338-019-00158-8.
  • Li, Y., L. Qian, and M. Hao. 2015. The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Composites. Part A, Applied Science and Manufacturing 72:40–48. doi:10.1016/j.compositesa.2015.01.029.
  • Liang, S., P.-B. Gning, and L. Guillaumat. 2015. Quasi-static behaviour and damage assessment of flax/epoxy composites. Materials & Design 67:344–53. doi:10.1016/j.matdes.2014.11.048.
  • Lilholt, H. Toftegaard, H. Thomsen A., B, and Schmidt, A., S. Natural composites based on cellulosic fibres and polypropylene matrix. Their processing and characterization. Proceedings of ICCM 12, 1999.(p. 9). Paris.
  • Liotier, P.-J., M. F. Pucci, A. Le Duigou, A. Kervoelen, J. Tirillo, F. Sarasini, and S. Drapier. 2019. Role of interface formation versus fibres properties in the mechanical behaviour of bio-based composites manufactured by liquid composite molding processes. Composites Part B-Engineering 163:86–95. doi:10.1016/j.compositesb.2018.10.103.
  • Liu, J. Y., and W. T. Simpson. 1999. Two-stage moisture diffusion in wood with constant transport coefficients. Drying Technology 17 (1–2):258–67. doi:10.1080/07373939908917528.
  • Magniez, K., B. M. Zaidi, J. Zhang, and M. Miao. 2020. Prestrained twistless flax yarn as reinforcement for polymer-matrix composites. Polymer Composites 41 (3):930–38. doi:10.1002/pc.25424.
  • Mahboob, Z., and H. Bougherara. 2018. Fatigue of flax-epoxy and other plant fibre composites: Critical review and analysis. Composites. Part A, Applied Science and Manufacturing 109:440–62. doi:10.1016/j.compositesa.2018.03.034.
  • Mak, K., and A. Fam. 2020. The effect of wet-dry cycles on tensile properties of unidirectional flax fiber reinforced polymers. Composites Part B-Engineering 183:107645. doi:10.1016/j.compositesb.2019.107645.
  • Malik K. 2021 , F. Ahmad, and E. Gunister. 2021. Drilling Performance of Natural Fiber Reinforced Polymer Composites: A Review. Journal of Natural Fibers:1–19. doi: 10.1080/15440478.2020.1870624.]
  • Malik, K., F. Ahmad, and E. Gunister. 2021. A review on the Kenaf fiber reinforced thermoset composites. Applied Composite Materials 28 (2):491–528. doi:10.1007/s10443-021-09871-5.
  • Malik, K., F. Ahmad, N. Yunus, E. Gunister, T. Nakato, E. Mouri, and S. Ali 2021. A Review of Flax Fiber Reinforced Thermoset Polymer Composites: Thermal-Physical Properties, Improvements and Application. Journal of Natural Fibers. doi: 10.1080/15440478.2021.1993507.
  • Megahed, M., R. M. Abo-bakr, and S. A. Mohamed. 2020. Optimization of hybrid natural laminated composite beams for a minimum weight and cost design. Composite Structures 239:111984. doi:10.1016/j.compstruct.2020.111984.
  • Merlini, C., V. Soldi, and G. M. O. Barra. 2011. Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing 30 (8):833–40. doi:10.1016/j.polymertesting.2011.08.008.
  • More, A. P. 2021. Flax fiber-based polymer composites: A review. Advanced Composites and Hybrid Materials. doi:10.1007/s42114-021-00246-9.
  • Motoc, D. L. 2018. “Hybrid effects on effective mechanical properties of CF/FF and BF/FF epoxy-based composites.” In 3rd China-Romania Science and Technology Seminar 399 , ed. I. V. Abrudan, T. Shi, S. Lache, Y. Wu, R. Muntean, and G. Oancea. Materials Science and Engineering: IOP Conference Series.(p. 012037). doi:10.1088/1757-899x/399/1/012037
  • Moudood, A., A. Rahman, A. Ochsner, M. Islam, and G. Francucci. 2019. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. Journal of Reinforced Plastics and Composites 38 (7):323–39. doi:10.1177/0731684418818893.
  • Moudood, A., A. Rahman, N. M. L. Huq, A. Öchsner, M. M. Islam, and G. Francucci. 2020. Mechanical properties of flax fiber-reinforced composites at different relative humidities: Experimental, geometric, and displacement potential function approaches. Polymer Composites 41 (12):4963–73. doi:10.1002/pc.25766.
  • Muralidhar, B. A., V. R. Giridev, and K. Raghunathan. 2012. Flexural and impact properties of flax woven, knitted and sequentially stacked knitted/woven preform reinforced epoxy composites. Journal of Reinforced Plastics and Composites 31 (6):379–88. doi:10.1177/0731684412437987.
  • Nirmal, U., J. Hashim, and M. M. H. Megat Ahmad. 2015. A review on tribological performance of natural fibre polymeric composites. Tribology International 83:77–104. doi:10.1016/j.triboint.2014.11.003.
  • Nisini, E., C. Santulli, A. Ceruti, and A. Liverani. 2018. High speed impact properties of carbon-basalt-flax DHEC composites compared with pure carbon fibre composites. Composite Structures 192:165–72. doi:10.1016/j.compstruct.2018.02.058.
  • Nisini, E., C. Santulli, and A. Liverani. 2017. Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Composites Part B: Engineering 127:92–99. doi:10.1016/j.compositesb.2016.06.071.
  • Oksman, K. 2001. High quality flax fibre composites manufactured by the resin transfer moulding process. Journal of Reinforced Plastics and Composites 20 (7):621–27. doi:10.1177/073168401772678634.
  • Okubo, K., T. Fujii, and Y. Yamamoto. 2004. Development of bamboo-based polymer composites and their mechanical properties. Composites. Part A, Applied Science and Manufacturing 35 (3):377–83. doi:10.1016/j.compositesa.2003.09.017.
  • Panzera, T. H., T. Jeannin, X. Gabrion, V. Placet, C. Remillat, I. Farrow, and F. Scarpa. 2020. Static, fatigue and impact behaviour of an autoclaved flax fibre reinforced composite for aerospace engineering. Composites Part B-Engineering 197. doi:10.1016/j.compositesb.2020.108049.
  • Papa, I., M. R. Ricciardi, V. Antonucci, V. Pagliarulo, and V. Lopresto. 2018. Impact behaviour of hybrid basalt/flax twill laminates. Composites Part B: Engineering 153:17–25. doi:10.1016/j.compositesb.2018.07.025.
  • Petrucci, R., C. Santulli, D. Puglia, E. Nisini, F. Sarasini, J. Tirillo, L. Torre, G. Minak, and J. M. Kenny. 2015. Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Composites Part B-Engineering 69:507–15. doi:10.1016/j.compositesb.2014.10.031.
  • Petrucci, R., C. Santulli, D. Puglia, F. Sarasini, L. Torre, and J. M. Kenny. 2013. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Materials & Design 49:728–35. doi:10.1016/j.matdes.2013.02.014.
  • Pickering, K. 2008. Properties and performance of natural-fibre composites. Cambridge, England: Woodhead Publishing.
  • Pil, L., F. Bensadoun, and J. Pariset, Ignaas %J Composites Part A: Applied Science Verpoest, and Manufacturing. 2016. Why are designers fascinated by flax and hemp fibre composites? Composites Part A: Applied Science and Manufacturing 83:193–205. doi:https://doi.org/10.1016/j.compositesa.2015.11.004.
  • Pisupati, A., A. Ayadi, M. Deleglise-Lagardere, and C. H. Park. 2019. Influence of resin curing cycle on the characterization of the tensile properties of flax fibers by impregnated fiber bundle test. Composites Part a-Applied Science and Manufacturing 126:105572. doi:10.1016/j.compositesa.2019.105572.
  • Rahman, M. Z. 2021. Mechanical and damping performances of flax fibre composites – A review. Composites Part C: Open Access 4:100081. doi:10.1016/j.jcomc.2020.100081.
  • Ramakrishnan, K. R., S. Corn, N. Le Moigne, P. Ienny, and P. Slangen. 2021. Experimental assessment of low velocity impact damage in flax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysis. Composites Part a-Applied Science and Manufacturing 140:106137. doi:10.1016/j.compositesa.2020.106137.
  • Ramamoorthy, S. K., M. Skrifvars, and A. Persson. 2015. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polymer Reviews 55 (1):107–62. doi:10.1080/15583724.2014.971124.
  • Ramesh, M., and P. Sudharsan. 2018. Experimental investigation of mechanical and morphological properties of flax-glass fiber reinforced hybrid composite using finite element analysis. Silicon 10 (3):747–57. doi:10.1007/s12633-016-9526-5.
  • Ramesh, M. 2019. Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science 102:109–66.
  • Ramnath, B. V., V. M. Manickavasagam, C. Elanchezhian, C. V. Krishna, S. Karthik, and K. Saravanan. 2014. Determination of mechanical properties of intra-layer abaca-jute-glass fiber reinforced composite. Materials & Design 60:643–52. doi:10.1016/j.matdes.2014.03.061.
  • Raponi, E., C. Sergi, S. Boria, J. Tirillò, F. Sarasini, and A. Calzolari. 2021. Temperature effect on impact response of flax/epoxy laminates: Analytical, numerical and experimental results. Composite Structures 274:114316. doi:10.1016/j.compstruct.2021.114316.
  • Ravandi, M., U. Kureemun, M. Banu, W. S. Teo, L. Tong, T. E. Tay, and H. P. Lee. 2019. Effect of interlayer carbon fiber dispersion on the low-velocity impact performance of woven flax-carbon hybrid composites. Journal of Composite Materials 53 (12):1717–34. doi:10.1177/0021998318808355.
  • Ravandi, M., W. S. Teo, L. Q. N. Tran, M. S. Yong, and T. E. Tay. 2017. Low velocity impact performance of stitched flax/epoxy composite laminates. Composites Part B: Engineering 117:89–100. doi:10.1016/j.compositesb.2017.02.003.
  • Ravandi, M., W. S. Teo, M. S. Yong, and T. E. Tay. 2018. Prediction of Mode I interlaminar fracture toughness of stitched flax fiber composites. Journal of Materials Science 53 (6):4173–88. doi:10.1007/s10853-017-1859-y.
  • Ricciardi, M. R., I. Papa, V. Lopresto, A. Langella, and V. Antonucci. 2019. Effect of hybridization on the impact properties of flax/basalt epoxy composites: Influence of the stacking sequence. Composite Structures 214:476–85. doi:10.1016/j.compstruct.2019.01.087.
  • Rowell, R. M, Han, J., S, and Rowell, J., S. 2000 Characterization and factors effecting fiber properties . . Frollini, E, Leão, A., l, and Mattoso, L. C.L.eds. Natural Polymers and Agrofibers Based Composites: preparation, properties and applications. 115–134. San Carlos, Brazil: L.H.C., Embrapa .
  • Ryzinska, G., and G. Janowski. 2020. INFLUENCE OF RVE GEOMETRICAL PARAMETERS ON ELASTIC RESPONSE OF WOVEN FLAX–EPDXY COMPOSITE MATERIALS. Composites Theory and Practice 20 (2):51–59.
  • Ryzinska, G., G. Janowski, and L. Bak. 2021. Modeling of compression test of natural fiber composite sections. Advances in Science and Technology-Research Journal 15 (2):138–47. doi:10.12913/22998624/133486.
  • Saadati, Y., G. Lebrun, J.-F. Chatelain, and Y. Beauchamp. 2020. Experimental investigation of failure mechanisms and evaluation of physical/mechanical properties of unidirectional flax–epoxy composites. Journal of Composite Materials 54 (20):2781–801. doi:10.1177/0021998320902243.
  • Sakurada, I., Y. Nukushina, and T. Ito. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science 57 (165):651–60. doi:10.1002/pol.1962.1205716551.
  • Sarasini, F., J. Tirillo, S. D’Altilia, T. Valente, C. Santulli, F. Touchard, L. Chocinski-Arnault, D. Mellier, L. Lampani, and P. Gaudenzi. 2016. Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Composites Part B-Engineering 91:144–53. doi:10.1016/j.compositesb.2016.01.050.
  • Sarkar, F., M. Akonda, and D. U. Shah. 2020. Mechanical properties of flax tape-reinforced thermoset composites. Materials (Basel, Switzerland) 13 (23):5485. doi:10.3390/ma13235485.
  • Sathish, S., K. Kumaresan, L. Prabhu, and N. Vigneshkumar. 2017a. Experimental investigation on volume fraction of mechanical and physical properties of flax and bamboo fibers reinforced hybrid epoxy composites. Polymers and Polymer Composites 25 (3):229–36. doi:10.1177/096739111702500309.
  • Sathish, S., K. Kumaresan, L. Prabhu, and N. Vigneshkumar. 2017b. Experimental investigation on volume fraction of mechanical and physical properties of flax and bamboo fibers reinforced hybrid epoxy composites. Polymers & Polymer Composites 25 (3):229–35. doi:10.1177/096739111702500309.
  • Satyanarayana, Kestur G., Gregorio G. C. Arizaga, and Fernando Wypych. 2009. “Biodegradable composites based on lignocellulosic fibers—An overview.” Progress in polymer science 34 (9):982–1021. doi: https://doi.org/10.1016/j.progpolymsci.2008.12.002.
  • Scida, D., A. Bourmaud, and C. Baley. 2017. Influence of the scattering of flax fibres properties on flax/epoxy woven ply stiffness. Materials & Design 122:136–45. doi:10.1016/j.matdes.2017.02.094.
  • Selver, E., N. Ucar, and T. Gulmez. 2018. Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. Journal of Industrial Textiles 48 (2):494–520. doi:10.1177/1528083717736102.
  • Shah, D. U., P. J. Schubel, P. Licence, and M. J. Clifford. 2012. Hydroxyethylcellulose surface treatment of natural fibres: The new ‘twist’in yarn preparation and optimization for composites applicability. Journal of Materials Science 47 (6):2700–11. doi:10.1007/s10853-011-6096-1.
  • Shah, D. U. 2013. Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. Journal of Materials Science 48 (18):6083–107. doi:10.1007/s10853-013-7458-7.
  • Shamsuyeva, M., O. Hansen, and H.-J. Endres. 2019. Review on hybrid carbon/Flax composites and their properties. International Journal of Polymer Science 2019:1–17. doi:10.1155/2019/9624670.
  • Snoeck, D., and N. De Belie. 2012. Mechanical and self-healing properties of cementitious composites reinforced with flax and cottonised flax, and compared with polyvinyl alcohol fibres. Biosystems Engineering 111 (4):325–35. doi:10.1016/j.biosystemseng.2011.12.005.
  • Strohrmann, K., and M. Hajek. 2019. Bilinear approach to tensile properties of flax composites in finite element analyses. Journal of Materials Science 54 (2):1409–21. doi:10.1007/s10853-018-2912-1.
  • Sumesh, K. R., K. Kanthavel, and V. Kavimani. 2020. Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. International Journal of Biological Macromolecules 150:775–85. doi:10.1016/j.ijbiomac.2020.02.118.
  • Tröger, Fritz, Gerd Wegener, and Claus Seemann. 1998. “Miscanthus and flax as raw material for reinforced particleboards.” Industrial Crops and Products 8 (2):113–21. doi: https://doi.org/10.1016/S0926-6690(97)10017-6.
  • Vijaya, R. B., C. Elanchezhian, P. V. Nirmal, G. Prem Kumar, V. Santhosh Kumar, S. Karthick, S. Rajesh, and K. Suresh. 2014. Experimental investigation of mechanical behavior of Jute-Flax based glass fiber reinforced composite. Fibers and Polymers 15 (6):1251–62. doi:10.1007/s12221-014-1251-3.
  • Vinu Kumar, S. M., K. L. Senthil Kumar, H. Siddhi Jailani, and G. Rajamurugan. 2020. Mechanical, DMA and sound acoustic behaviour of Flax woven fabric reinforced epoxy composites. Materials Research Express 7 (8):085302. doi:10.1088/2053-1591/abaea5.
  • Wang, A., X. Wang, and G. Xian. 2020. Mechanical, low-velocity impact, and hydrothermal aging properties of flax/carbon hybrid composite plates. Polymer Testing 90:106759. doi:10.1016/j.polymertesting.2020.106759.
  • Wang, W., N. Chouw, and K. Jayaraman. 2016. Effect of thickness on the impact resistance of flax fibre-reinforced polymer. Journal of Reinforced Plastics and Composites 35 (17):1277–89. doi:10.1177/0731684416648780.
  • Wu, C., K. Yang, G. Yizhuo, X. Jun, R. O. Ritchie, and J. Guan. 2019. Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibres. Composites. Part A, Applied Science and Manufacturing 117:357–68. doi:10.1016/j.compositesa.2018.12.003.
  • Xiong, X., S. Z. Shen, L. Hua, L. Xiang, X. Wan, and M. Miao. 2018. Predicting tensile behaviors of short flax fiber-reinforced polymer-matrix composites using a modified shear-lag model. Journal of Composite Materials 52 (27):3701–13. doi:10.1177/0021998318769128.
  • Xu, D., C. Cerbu, H. Wang, and I. C. Rosca. 2019. Analysis of the hybrid composite materials reinforced with natural fibers considering digital image correlation (DIC) measurements. Mechanics of Materials 135:46–56. doi:10.1016/j.mechmat.2019.05.001.
  • Yan, L., N. Chouw, and K. Jayaraman. 2014. Flax fibre and its composites–A review. Composites Part B: Engineering 56:296–317. doi:10.1016/j.compositesb.2013.08.014.
  • Zafeiropoulos, N. E., D. R. Williams, and C. A. Baillie. . 2002. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments Composites Part A: Applied Science and Manufacturing. 33(8):1083–93. doi:https://doi.org/10.1016/S1359-835X(02)00082-9.
  • Zakikhani, P., R. Zahari, M. T. H. Sultan, and D. L. Majid. 2014. Extraction and preparation of bamboo fibre-reinforced composites. Materials & Design 63:820–28. doi:10.1016/j.matdes.2014.06.058.
  • Zeng, X., S. J. Mooney, and C. J. Sturrock. 2015. Assessing the effect of fibre extraction processes on the strength of flax fibre reinforcement. Composites. Part A, Applied Science and Manufacturing 70:1–7. doi:10.1016/j.compositesa.2014.12.004.
  • Zhang, Y. L., Y. Li, H. Ma, and T. Yu. 2013. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Composites Science and Technology 88:172–77. doi:10.1016/j.compscitech.2013.08.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.