107
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Valorization of Sugarcane Bagasse to Sulfur Containing Graphene: Chemistry and Mechanism

ORCID Icon, & ORCID Icon

References

  • Chen, F., J. Yang, T. Bai, B. Long, and X. Zhou. 2016. Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries. Journal of Electroanalytical Chemistry 768:18–26. doi:10.1016/j.jelechem.2016.02.035.
  • Chen, L., X. Cui, Y. Wang, M. Wang, R. Qiu, Z. Shu, L. Zhang, Z. Hua, F. Cui, C. Wei, et al. 2014. One-step synthesis of sulfur doped graphene foam for oxygen reduction reactions. Dalton Transactions 43:3420–23. doi:10.1039/c3dt52253a.
  • Debbarma, J., P. Mandal, and M. Saha. 2020a. N-graphene oxide and N-reduced graphene oxide from jujube seeds: Chemistry and mechanism. Fullerenes, Nanotubes and Carbon Nanostructures 28:702–06. doi:10.1080/1536383X.2020.1746907.
  • Debbarma, J., P. Mandal, and M. Saha. 2020b. Chemistry and mechanism of one-step formation of graphene from agrowaste. Letters in Applied NanoBioscience 9:1389–94.
  • Debbarma, J., P. Mandal, and M. Saha. 2021. Fruit wastes to N-containing graphene: Chemistry and mechanism. Fullerenes, Nanotubes and Carbon Nanostructures 29:1–7.
  • Debbarma, J., M. J. P. Naik, and M. Saha. 2019. From agrowaste to graphene nanosheets: Chemistry and synthesis. Fullerenes, Nanotubes and Carbon Nanostructures 27:482–85. doi:10.1080/1536383X.2019.1601086.
  • Debbarma, J., M. J. P. Naik, M. Saha, and A. Bhargava. 2020. N-Graphene derivatives from papaya seeds: Synthesis and chemistry. Journal of Scientific and Industrial Research 79:246–49.
  • Goswami, S., P. Banerjee, S. Datta, A. Mukhopadhayay, and P. Das. 2017. Graphene oxide nanoplatelets synthesized with carbonized agro-waste biomass as green precursor and its application for the treatment of dye rich wastewater. Process Safety and Environmental Protection 106:163–72. doi:10.1016/j.psep.2017.01.003.
  • Hassani, F., H. Tavakol, F. Keshavarzipour, and A. Javaheri. 2016. A simple synthesis of sulfur-doped graphene using sulfur powder by chemical vapor deposition. RSC Advances 6:27158–63. doi:10.1039/C6RA02109C.
  • Li, M., W. Li, and S. Liu. 2011. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydrate Research 346:999–1004. doi:10.1016/j.carres.2011.03.020.
  • Long, S. Y., Q. S. Du, S. Q. Wang, P. D. Tang, D. P. Li, and R. B. Huang. 2019. Graphene two-dimensional crystal prepared from cellulose two-dimensional crystal hydrolysed from sustainable biomass sugarcane bagasse. Journal of Cleaner Production 241:118209. doi:10.1016/j.jclepro.2019.118209.
  • Mulinari, D. R., J. D. P. Cipriano, M. R. Capri, and A. T. Brandão. 2018. Influence of surgarcane bagasse fibers with modified surface on polypropylene composites. Journal of Natural Fibers 15:174–82. doi:10.1080/15440478.2016.1266294.
  • Purkait, T., G. Singh, M. Singh, D. Kumar, and R. S. Dey. 2017. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Scientific Reports 7:1–14. doi:10.1038/s41598-017-15463-w.
  • Shams, S. S., L. S. Zhang, R. Hu, R. Zhang, and J. Zhu. 2015. Synthesis of graphene from biomass: A green chemistry approach. Materials Letters 161:476–79. doi:10.1016/j.matlet.2015.09.022.
  • Shang, B., Y. Liu, S. J. Jiang, and Y. Liu. 2015. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: A systematic review and meta-analysis. Scientific Reports 5:1–9. doi:10.1038/srep15179.
  • Singh, P., J. Bahadur, and K. Pal. 2017. One-step one chemical synthesis process of graphene from rice husk for energy storage applications. Graphene 6:61–71. doi:10.4236/graphene.2017.63005.
  • Somanathan, T., K. Prasad, K. K. Ostrikov, A. Saravanan, and V. M. Krishna. 2015. Graphene oxide synthesis from agro waste. Nanomaterials 5:826–34. doi:10.3390/nano5020826.
  • Wong, C. H. A., Z. Sofer, K. Klímová, and M. Pumera. 2016. Microwave exfoliation of graphite oxides in H2S plasma for the synthesis of sulfur-doped graphenes as oxygen reduction catalysts. ACS Applied Materials & Interfaces 8:31849–55. doi:10.1021/acsami.6b10199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.