289
Views
1
CrossRef citations to date
0
Altmetric
Review

Chemical Treatments for Modification of the Surface Morphology of Coir Fiber: A Review

&
Pages 11940-11961 | Published online: 12 Mar 2022

References

  • Abdelmouleh, M., S. Boufi, M. N. Belgacem, and A. Dufresne. 2007. Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Composite Science and Technology 67:1627–39. doi:10.1016/j.compscitech.2006.07.003.
  • Abdul Khalil, H. P. S., H. D. Rozman, M. N. Ahmad, and H. Ismail. 2000. Acetylated Plant-Fiber-reinforced polyester composites: A study of mechanical, hygrothermal, and aging characteristics. Polymers Plastics Technology and Engineering 39 (4):757–81. doi:10.1081/PPT-100100057.
  • Akintayo, C. O., M. A. Azeez, and E. T. A. Sabine Beuerman. 2016. Spectroscopic, mechanical, and thermal characterization of native and modified Nigerian Coir Fibers. Journal Of Natural Fibers 13 (5):520–31. doi:10.1080/15440478.2015.1076365.
  • Alamri, H., and I. M. Low. 2012. Effect of water absorption on the mechanical properties of n-SiC filled recycled cellulose fibre reinforced epoxy eco-nanocomposites. Polymer Testing 31:810–18. doi:10.1016/j.polymertesting.2012.06.001.
  • Ali, A., K. Shaker, Y. Nawab, et al. 2018. Hydrophobic treatment of natural Fibers and their composites—a review. Journal of Industrial Textiles 47:2153–83. doi:10.1177/1528083716654468.
  • Ardanuy, M., J. Claramunt, and R. D. Toledo Filho. 2015. Cellulosic fiber-reinforced cement-based composites: A review of recent research. Construction and Building Materials 79:15–128. doi:10.1016/j.conbuildmat.2015.01.035.
  • Arifuzzaman, K. G., M. Alam Shams, M. R. Kabir, M. Gafur, and M. Terano. 2013. AlamInfluence of chemical treatment on the properties of banana stem fiber and banana stem fiber/Coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low‐density polyethylene composites. Journal of Applied Polymer Science 128 (2):1020–29.
  • Arrakhiz, F., M. Achaby, M. Malha, M. Bensalah, O. Fassi-Fehri, R. Bouhfid, V. Benmoussa, and V. Qaiss. 2013. Mechanical and thermal properties of natural Fibers reinforced polymer composites: Doum/low density polyethylene. Material & Design 43:200–05. doi:10.1016/j.matdes.2012.06.056.
  • Arrakhiz, F. Z., M. El, A. C. K. Achaby, S. Vaudreuil, K. Benmoussa, R. Bouhfid, O. F. Fehri, and A. Qaiss. 2012. Mechanical properties of high density polyethylene reinforced with chemically modified Coir Fibers: Impact of chemical treatment. Material and Design 37:379–83. doi:10.1016/j.matdes.2012.01.020.
  • Arsyad, M. 2017. Effect of alkali treatment on the coconut fiber surface. ARPN Journal of Engineering and Applied Sciences 12 (6):1870–75.
  • Bakri, B., A. E. E. P. Naharuddin, I. Renreng, and H. Arsyad. 2018a. Characterization of Coir Fibers after alkali and microwave treatments. ARPN Journal of Engineering and Applied Sciences 13 (4):1335–1339.
  • Bakri, B., A. E. E. Putra, A. A. Mochtar, I. Renreng, and H. Arsyad. 2018b. Sodium bicarbonate treatment on mechanical and morphological properties of Coir Fibres. International Journal of Automotive and Mechanical Engineering 15 (3):5562–72. doi:10.15282/ijame.15.3.2018.12.0427.
  • Bakri, A. E. E. P., I. Renreng, H. Arshyad, and A. A. Mochtar. 2019. “Sodium bicarbonate treatment of Coir fiber on wettability and shear strength of Coir fiber-epoxy composite. Journal of Physics Conference Series 1242 (2019):1–6.
  • Bledzki, A. K., and J. Gassan. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24 (2):221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Bledzki, A. K., S. Reihmane, and J. Gassan. 1996. Properties and modification methods for vegetable Fibers for natural fiber composites. Journal of Applied Polymer Science 59 (8):1329–36. doi:10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0.
  • Carvalho, K. C. C., D. R. Mulinari, H. J. C. Voorwald, and M. O. H. Cioffie. 2010. Chemical modification effect on the mechanical properties of HIPS/ coconut fiber composites. BioResources 5 (2):1143–55.
  • Chand, N., and M. Fahim. eds. 2008. Tribology of natural fiber polymer composites. In Woodhead publishing series in composites science and engineering . Amsterdam: Elsevier.
  • Chandrasekar, M., M. R. Ishak, S. M. Sapuan, Z. Leman, and M. Jawaid. 2017. A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plastics, Rubber and Composites 46 (3):119–36. doi:10.1080/14658011.2017.1298550.
  • Chollakup, R., W. Smitthipong, W. Kongtud, and R. Tantatherdtam. 2013. Polyethylene green composites reinforced with cellulose Fibers (Coir and palm Fibers): Effect of fiber surface treatment and fiber content. Journal of Adhesion Science and Technology 27 (12):1290–300. doi:10.1080/01694243.2012.694275.
  • Dong, Y., A. Ghataura, H. Takagi, H. H. Hazim, A. N. Nakagaito, and K. T. Lau. 2014. Polylactic acid (PLA) biocomposites reinforced with Coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites. Part A, Applied Science and Manufacturing 63:76–84. doi:10.1016/j.compositesa.2014.04.003.
  • Duan, J., H. Wu, W. Fu, and M. Hao. 2017. Mechanical properties of hybrid sisal/Coir Fibers reinforced polylactide biocomposites. Polymer Composites 39 (S1):188–E199. doi:10.1002/pc.24489.
  • Essabir, H., M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. Qaiss. 2016. Structural, mechanical and thermal properties of bio-based hybrid composites from waste Coir residues: Fibers and shell particles. Mechanics of Materials 93:134–44. doi:10.1016/j.mechmat.2015.10.018.
  • Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural Fibers: 2000–2010. Progress in Polymer Science 37 (11):1552–96.
  • Fávaro, S. L., M. S. Lopes, A. G. V. C. Neto, R. R. Santana, and E. Radovanovic. 2010. Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Composites. Part A, Applied Science and Manufacturing 41:154–60. doi:10.1016/j.compositesa.2009.09.021.
  • Gaceva, B. G., M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M. E. Errico. 2007. Natural fiber eco-composites. Polymer Composites 28:98–107. doi:10.1002/pc.20270.
  • Geethamma, V. G., R. Joseph, and S. Thomas. 1995. Short Coir fiber‐reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment. Journal of Applied PolymerScience 55 (4):583–94. doi:10.1002/app.1995.070550405.
  • Gu, H. 2009. Tensile behaviours of the Coir fibre and related composites after NaOH treatment. Materials & Design 30 (9):3931–34. doi:10.1016/j.matdes.2009.01.035.
  • Guduri, B. R., H. Semosa, Y. Z. Meng, and H. Abhyankar. 2009. “Green composites from woven flax fiber and bio-copolyester.” Proceedings of 17th ICCM International conferences on composite materials. Edinburgh (UK): 27–31.
  • Hasan, M., M. E. Hoque, S. S. Mir, N. Saba, and S. M. Sapuan. 2015. Manufacturing of Coir Fibre-Reinforced polymer composites by hot compression technique. Manufacturing of Natural Fibre Reinforced Polymer Composites 309–30.
  • Hattallia, S., A. Benaboura, F. Ham-Pichavant, A. Nourmamode, and A. Castellan. 2002. Adding value to alfa grass (Stipa tenacissima L.) soda lignin as phenolic resins. 1. Lignin characterization. Polymer Degradation and Stability 76 (2):259–64. doi:10.1016/S0141-3910(02)00022-8.
  • Hill, C. A. S., and H. P. S. Abdul Khalil. 2000. Effect of fiber treatments on mechanical properties of Coir or oil palm fiber reinforced polyester composites. Journal of Applied Polymer Science 78:1685–97. doi:10.1002/1097-4628(20001128)78:9<1685::AID-APP150>3.0.CO;2-U.
  • Hoareau, W., W. G. Trindade, B. Siegmund, A. Castellan, and E. Frollini. 2004. Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polymer Degradation and Stability 86 (3):567–76. doi:10.1016/j.polymdegradstab.2004.07.005.
  • Islam, M. N., M. M. Haque, and M. M. Huque. 2009. Mechanical and morphological properties of chemically treated Coir-filled polypropylene composites. Industrial Engineering Chemistry Research 48 (23):10491–97. doi:10.1021/ie900824c.
  • Ismail, A. E., M. K. Awang, and M. H. Sa’at. 2007. “Tensile strength of natural fiber reinforced polyester composite.”AIP Conference Proceedings 909, 174: 174–79
  • Javadi, A., Y. Srithep, S. Pilla, J. Lee, S. Gong, and L. S. Turng. 2010. Processing and characterization of solid and microcellular PHBV/Coir fiber composites. Materials Science and Engineering: C 30 (5):749–57. doi:10.1016/j.msec.2010.03.008.
  • Jincy, P. J., A. D. Ravindranath, and U. S. Sarma. 2015. Ecofriendly organosolv process for pulping of tender coconut fibre. Cord 31 (1):13–23. doi:10.37833/cord.v31i1.64.
  • Joseph, S., M. S. Sreekala, Z. Oommen, P. Koshy, and S. Thomas. 2002. A comparison of mechanical properties of phenol formaldehyde composites reinforced with banana Fibers and glass Fibers. Composite Science and Technology 62:1857–68. doi:10.1016/S0266-3538(02)00098-2.
  • Kabir, M. M., H. Wang, T. Aravinthan, et al. 2011. “Effects of natural fibre surface on composite properties: A review.” Proceedings of the 1st international postgraduate conference on engineering, designing and developing the built environment for sustainable wellbeing (eddBE2011): 94–99.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composite Part B: Engineering 43:2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2013. Tensile properties of chemically treated hemp fibres as reinforcement for composites. Composites Part B: Engineering 53:362–68. doi:10.1016/j.compositesb.2013.05.048.
  • Kalia, S., A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, L. Njuguna, and E. Nassiopoulos. 2011. Cellulose-based bio-and nanocomposites: A review. International Journal of Polymer Science 2011:1–35. doi:10.1155/2011/837875.
  • Karthikeyan, A., and K. Balamurugan. 2012. Effect of alkali treatment and fiber length on impact behavior of Coir fiber reinforced epoxy composites. Journal of Scientific and Industrial Research 71 (9):627–31.
  • Khan, A., M. A. Ahmad, S. Joshi, and S. A. A. Said. 2014. Abrasive wear behavior of chemically treated Coir fibre filled epoxy polymer composites. American Journal of Mechanical Engineering and Automation 1 (1):1–5.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2019. Extraction and characterization of natural fiber from eleusine indica grass as reinforcement of sustainable fiber-reinforced polymer composites. Journal of Natural Fibers. doi:10.1080/15440478.2019.1697993.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2020. Characterization of natural fibers from cortaderiaSelloana grass (Pampas) as reinforcement material for the production of the composites. Journal of Natural Fibers. doi:10.1080/15440478.2019.1709110.
  • Kumar, R., S. Obrai, and A. Sharma. 2011. Chemical modifications of natural fiber for composite material. Pelagia Research Library Der Chem Sin 2:219–28.
  • Kumar, R., S. Sivaganesan, P. Senthamaraikannan, S. S. Saravanakumar, A. Khan, S. Daniel A.A, and L. Loganathan. 2020. Characterization of new cellulosic fiber from the bark of Acacia nilotica L. Plant. Journal of Natural Fibers. doi:10.1080/15440478.2020.1738305.
  • Li, X., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymer and Environment 15:25–33. doi:10.1007/s10924-006-0042-3.
  • Lindman, B., B. Medronho, L. Alves, C. Costa, H. Edlund, and M. Norgren. 2017. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Physics Chemistry 19 (35):23704–18.
  • Lou, C. W., C. W. Lin, C. H. Lei, K. H. Su, C. H. Hsu, Z. H. Liu, and J. H. Lin. 2007. PET/PP blends with bamboo charcoal to produce functional Composites. Journal of Materials Processing Technology 192:428–33. doi:10.1016/j.jmatprotec.2007.04.018.
  • Madyira, D., and A. Kaymakci 2016. “Mechanical characterization of Coir epoxy composites and effect of processing methods on mechanical properties.” International Conference on Competitive Manufacturing: 187–92.
  • Malkapuram, R., V. Kumar, and Y. S. Negi. 2009. Recent development in natural fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites 28:1169–89. doi:10.1177/0731684407087759.
  • Manimaran, P., M. R. Sanjay, P. Senthamaraikannan, S. S. Saravanakumar, S. Siengchin, G. Pitchayyapillai, and A. Khan. 2019. Physico-Chemical properties of fiber extracted from the flower of celosia argentea plant. Journal of Natural Fibers. doi:10.1080/15440478.2019.1629149.
  • Manjula, R., N. V. Raju, R. P. S. Chakradhar, and J. Johns. 2018. Effect of thermal aging and chemical treatment on tensile properties of Coir Fiber. Journal of Natural Fibers 15 (1):112–21. doi:10.1080/15440478.2017.1321513.
  • Mir, S. S., N. Nafsin, M. Hasan, N. Hasan, and A. Hassan. 2013. Improvement of physico-mechanical properties of Coir-polypropylene biocomposites by fiber chemical treatment. Materials & Design 52:251–57. doi:10.1016/j.matdes.2013.05.062.
  • Mohanty, A. K., M. Misra, and G. Hinrichsen. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276–277 (1):1–24. doi:10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.
  • Mueller, D. H. 2003. New Discovery in the properties of composites reinforced with natural fibers. Journal of Industrial Textiles 33:111–30. doi:10.1177/152808303039248.
  • Musanif, I. S., and A. Thomas. 2015. Effect of alkali treatments of physical and mechanical properties of Coir Fiber. Chemical and Materials Engineering 3 (2):23–28. doi:10.13189/cme.2015.030202.
  • Nam, T. H., S. Ogihara, N. H. Tung, and S. Kobayashi. 2011. Effect of alkali treatment on interfacial and mechanical properties of Coir fiber reinforced poly (butylene succinate) biodegradable composites. Composites Part B: Engineering 42:1648–56. doi:10.1016/j.compositesb.2011.04.001.
  • Narayanasamy, P., P. Balasundar, S. Senthil, M. R. Sanjay, S. Siengchin, A. Khan, and A. M. Asiri. 2019. Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules 150:793–801. doi:10.1016/j.ijbiomac.2020.02.134.
  • Narendar, R., K. Priya Dasan, and M. Nair. 2013. Development of Coir pith/nylon fabric/epoxy hybrid composites: Mechanical and ageing studies. Materials & Design 54:644–51. doi:10.1016/j.matdes.2013.08.080.
  • Ng, Y. R., S. N. A. M. Shahid, and N. I. AANordin. 2018. “The effect of alkali treatment on tensile properties of Coir/polypropylene biocomposite.” 2018 IOP Conference Series Materials Science and Engineering 368: 01204. Selangor, Malaysia.
  • Njokua, R. E., I. Ofilib, D. O. Agbiogwuc, and C. V. Agu. 2012. Effect of alkali treatment and fiber content variation on the tensile properties of coir fiber reinforced cashew nut shell liquid composite. Nigerian Journal of Technology (NIJOTECH) 31 (2):107–10.
  • Pérez-Fonseca, A. A., M. Arellano, D. Rodrigue, R. González-Núñez, and J. R. Robledo-Ortíz. 2016. Effect of coupling agent content and water absorption on the mechanical properties of Coir-agave Fibers reinforced polyethylene hybrid composites. Polymer Composites 37 (10):3015–24. doi:10.1002/pc.23498.
  • Pickering, K. L., M. G. A. Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites. Part A, Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Premalal, H. G. B., H. Ismail, and A. Bahrain. 2002. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc-filled polypropylene composites. Polymer and Testing 21:833–39. doi:10.1016/S0142-9418(02)00018-1.
  • Priya, N. A. S., P. V. Raju, and P. N. E. Naveen. 2014. Experimental testing of polymer reinforced with coconut Coir Fiber composites. International Journal of Emerging Technology and Advanced Engineering 4 (12):453–60.
  • Qiu, W., K. Mai, and H. Zeng. 2000. Effect of silane‐grafted polypropylene on the mechanical properties and crystallization behavior of talc/polypropylene composites. Journal of Applied Polymer Science 77:2974–77. doi:10.1002/1097-4628(20000923)77:13<2974::AID-APP22>3.0.CO;2-R.
  • Rahman, M. R., M. M. Huque, M. N. Islam, and M. Hasan. 2008. Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Composites. Part A, Applied Science and Manufacturing 39:1739–47. doi:10.1016/j.compositesa.2008.08.002.
  • Rana, A. K., A. Mandal, and S. Bandyopadhyay. 2003. Short jute fiber reinforced polypropylene composites: Effect of compatibilizer, impact modifier and fiber loading. Composite Science and Technology 63:801–06. doi:10.1016/S0266-3538(02)00267-1.
  • Rana, A. K., A. Mandal, B. C. Mitra, R. Jacobson, R. Rowell, and A. L. Banerjee. 1998. Short jute fiber reinforced polypropylene composite: Effect of compatibilizer. Journal of Applied Polymer Science 69:329–38. doi:10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-R.
  • Ratta, V. 1999. Crystallization, morphology, thermal stability and adhesive properties of novel high performance semi crystalline polymides. Virginia: Faculty of Virginia Polytechnic Institute and State University.
  • Rebelo, V., Y. D. Silva, S. Ferreira, R. T. Filho, and V. Giacon. 2019. Effects of mercerization in the chemical and morphological properties of Amazon piassava. Polimeros 29 (1). doi: 10.1590/0104-1428.01717.
  • Rosa, M. F., B. S. Chiou, E. S. Medeiros, D. F. Wood, T. G. Williams, L. H. C. Mattoso, W. J. Orts, and S. H. Imam. 2009. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/Coir biocomposites. Bioresource Technology 100 (21):5196–202. doi:10.1016/j.biortech.2009.03.085.
  • Rowel, R. M. 1998. “Property enhanced natural fibre composite material based on chemical modification. Science and Technology of Polymers and Advanced Materials 717–32.
  • Roy, J. K., N. Akter, H. U. Zaman, K. M. Ashraf, S. Sultana, N. K. Shahruzzaman, M. A. Rahman, et al. 2014. Preparation and properties of Coir fiber-reinforced ethylene glycol dimethacrylate-based composite. Journal of Thermoplastic Composite Materials 27(1):35–51. doi:10.1177/0892705712439568.
  • Sakthivel, M., and S. Ramesh. 2013. Mechanical properties of natural fiber (banana, Coir, sisal) polymer composites. Science Park 1 (1):1–6.
  • Sanjay, M., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Santos, J. C. D., R. L. Siqueira, L. M. G. Vieira, R. T. S. Freire, V. Mano, and T. H. Panzera. 2018. Effects of sodium carbonate on the performance of epoxy and polyester Coir-Reinforced composites. Polymer Testing 67:533–44. doi:10.1016/j.polymertesting.2018.03.043.
  • Saw, S. K., K. Akhtar, N. Yadav, and A. K. Singh. 2014. Hybrid composites made from jute/Coir Fibers: Water absorption, thickness swelling, density, morphology, and mechanical properties. Journal of Natural Fibers 11:39–53. doi:10.1080/15440478.2013.825067.
  • Saw, S. K., G. Sarkhel, and A. Choudhary. 2012. Preparation and characterization of chemically modified Jute–Coir hybrid fiber reinforced epoxy novolac composites. Journal of Applied Polymer Science 125:3038–49. doi:10.1002/app.36610.
  • Saw, S. K., G. Sarkhel, and A. Choudhury. 2011. Surface modification of Coir fibre involving oxidation of lignins followed by reaction with furfuryl alcohol: Characterization and stability. Applied Surface Science 257 (8):3763–69. doi:10.1016/j.apsusc.2010.11.136.
  • Sawsen, C., K. Fouzia, B. Mohamed, and G. Moussa. 2015. Effect of flax Fibers treatments on the rheological and the mechanical behavior of a cement composite. Construction and Building Materials 79:229–35. doi:10.1016/j.conbuildmat.2014.12.091.
  • Scalici, V. F., and A. Valenza. 2016. Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: A preliminary study. Composites Part B: Engineering 94:167–75. doi:10.1016/j.compositesb.2016.03.053.
  • Setyanto, R. H., K. Diharj, I. M. Miasa, and P. Setyono. 2013. A preliminary study: the influence of alkali treatment on physical and mechanical properties of Coir Fiber. Journal of Materials Science Research 2 (4):80–88. doi:10.5539/jmsr.v2n4p80.
  • Shah, H., B. Srinivasulu, and S. C. Shit. 2013. Influence of banana fibre chemical modification on the mechanical and morphological properties of woven banana fabric/unsaturated polyester resin composites. Polymers from Renewable Resources 4 (2):61–84. doi:10.1177/204124791300400202.
  • Siakeng, R., M. Jawaid, H. Ariffin, and M. Salit. 2018. Effects of surface treatments on tensile, thermal and fibre-matrix bond strength of Coir and pineapple leaf fibres with poly lactic acid. Journal of Bionic Engineering 15:1035–46. doi:10.1007/s42235-018-0091-z.
  • Silva, G. G., D. Souza, D. A, J. C. Machado, and Hourston. 2000. Mechanical and thermal characterization of native Brazilian Coir fiber. Journal of Applied Polymer Science 76 (7):1197–206. doi:10.1002/(SICI)1097-4628(20000516)76:7<1197::AID-APP23>3.0.CO;2-G.
  • Sudhakara, P., D. Jagadeesh, Y. Wang, C. V. Prasad, A. K. Devi, G. Balakrishnan, B. Kim, and J. Song. 2013. Fabrication of borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and Coir Fibers. Carbohydrate Polymer 98 (1):1002–10. doi:10.1016/j.carbpol.2013.06.080.
  • Sumesh, K. R., V. Kavimani, G. Rajeshkumar, S. Indran, and A. Khan. 2020. Mechanical, water absorption and wear characteristics of novel polymeric composites: Impact of hybrid natural Fibers and oil cake filler addition. Journal of Industrial Textiles 152808372097134. doi:10.1177/1528083720971344.
  • Sun, Z., L. Zhang, D. Liang, W. Xiao, and J. Lin. 2017. Mechanical and thermal properties of PLA biocomposites reinforced by Coir Fibers. International Journal of Polymer Science 2017:1–8.
  • Valasek, P., R. D. Amato, M. Muller, and A. Ruggiero. 2018. Mechanical properties and abrasive wear of white/brown Coir epoxy composites. Composites Part: B Engineering 146:88–97. doi:10.1016/j.compositesb.2018.04.003.
  • Valášek, P., M. Müller, V. K. Vladimíršleger, M. Hromasová, R. D’Amato, and A. Ruggiero. 2021. Influence of alkali treatment on the microstructure and mechanical properties of Coir and Abaca Fibers. Materials 14 (10):26–36. doi:10.3390/ma14102636.
  • Varma, D. S., M. Varma, and I. K. Varma. 1985. Coir fibres II: Evaluation as a reinforcement in unsaturated polyester resin composites. Journal of Reinforced Plastics and Composites 4:419. doi:10.1177/073168448500400406.
  • Verma, D. 2015. The use of Coir/coconut fi bers as reinforcements in composites. Biofiber Reinforcement in Composite Materials 285–319. doi:10.1533/9781782421276.3.285.
  • Verma, D., P. Gope, A. Shandilya, A. Gupta, and M. Maheshwari. 2013. Coir fibre reinforcement and application in polymer composites: A. Environmental Science 4 (2):263–76.
  • Vignesh, K. 2018. Mercerization treatment parameter effect on Coir fiber reinforced polymer matrix composite. Materials research express 5 (7):1–24. IOP Science: United Kingdom.
  • Vijaya, R., J. D. J. Dhilip, S. Gowtham, S. Harikrishnan, B. Chandru, M. Amarnath, and A. Khan. 2020. Characterization of natural cellulose fiber from the barks of vachellia farnesiana. Journal of Natural FIbers 43: 168–73. doi:10.1080/15440478.2020.1764457.
  • Wang, X., L. Chang, X. Shi, and L. Wang. 2019. Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials 12 (9):1386–99. doi:10.3390/ma12091386.
  • Weyenberg, IV, T. C. Truong, B. Vangrimde, and I. Verpoest. 2006. Improving the properties of UD flax fiber reinforced composites by applying an alkaline fibre treatment. Composite Part A: Applied Science and Engineering 37 (9):1368–76. doi:10.1016/j.compositesa.2005.08.016.
  • Widnyanaa, A., I. G. Riana, I. Suratab, T. Gde, and T. Nindhia. 2020. “Tensile properties of coconut Coir single fiber with alkali treatment and reinforcement effect on unsaturated polyester polymer.”Materials Today: Proceedings, Spain, 22: 300–05.
  • Wolf, C. J. 1998. Encyclopedia of chemical technology. United Kingdom 7.
  • Xie, Y., C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai. 2010. Silane coupling agents used for natural fiber/polymer composites: A review (Review). Composites. Part A, Applied Science and Manufacturing 41:806–19. doi:10.1016/j.compositesa.2010.03.005.
  • Yan, L., N. Chouw, L. Huang, and B. Kasal. 2016. Effect of alkali treatment on microstructure and mechanical properties of Coir fibres, Coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials 112:168–82. doi:10.1016/j.conbuildmat.2016.02.182.
  • Yang, H. S., H. J. Kim, J. Son, H. J. Park, B. J. Lee, and T. S. Hwang. 2004. Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures 63:305–12. doi:10.1016/S0263-8223(03)00179-X.
  • Yew, B. S., M. Muhamad, S. Bahri Mohamed, and F. H. Wee. 2019. Effect of alkaline treatment on structural characterisation, thermal degradation and water absorption ability of Coir Fibre polymer composites. Sains Malaysiana 48 (3):653–59. doi:10.17576/jsm-2019-4803-19.
  • Yusoff, R. B., H. Takagi, and A. N. Nakagaito. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and Coir Fibers. Industrial Crops Production 94:562–73. doi:10.1016/j.indcrop.2016.09.017.
  • Zainudin, E., L. H. Yan, W. Haniffah, M. Jawaid, and O. Y. Alothman. 2014. Effect of Coir fiber loading on mechanical and morphological properties of oil palm Fibers reinforced polypropylene composites. Polymer and Composites 35 (7):1418–25. doi:10.1002/pc.22794.
  • Zaman, H. U., and M. D. H. Beg. 2014. Preparation, structure, and properties of the Coir fiber/polypropylene composites. Journal of Composite Materials 48 (26):3293–301. doi:10.1177/0021998313508996.
  • Zhang, L., and Y. Hu. 2014. Novel lignocellulosic hybrid particleboard composites made from rice straws and Coir Fibers. Material and Design 55:19–26. doi:10.1016/j.matdes.2013.09.066.
  • Zheng, Y. T., D. R. Cao, D. S. Wang, and J. J. Chen. 2007. Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC. Composites. Part A, Applied Science and Manufacturing 38:20–25. doi:10.1016/j.compositesa.2006.01.023.
  • Zhu, J., H. Zhu, J. Njuguna, et al. 2013. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 6:5171–98. doi:10.3390/ma6115171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.