164
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extraction and Characterisation of Natural Fibres from Imperata cylindrica: Morphological, Microstructural, Thermal, and Kinetic Properties

ORCID Icon, , , , , ORCID Icon, ORCID Icon & show all
Pages 12325-12338 | Published online: 05 Apr 2022

References

  • Ali, J. B., A. Musa, A. Danladi, M. Bukhari, and B. B. Nyakuma. 2020. Physico-mechanical properties of unsaturated polyester resin reinforced maize cob and jute fibre composites. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2020.1841062.
  • Asim, M., M. T. Paridah, M. Chandrasekar, R. M. Shahroze, M. Jawaid, M. Nasir, and R. Siakeng. 2020. Thermal stability of natural fibers and their polymer composites. Iranian Polymer Journal 29 (7):625–48.
  • Bolfrey-Arku, G., O. Onokpise, A. Carson, D. Shilling, and C. Coultas. 2006. The speargrass (Imperata cylindrica (L) 340 Beauv.) Menace in Ghana: incidence, farmer perceptions and control practices in the forest and Forest-Savanna transition agro-ecological zones of Ghana. West African Journal of Applied Ecology 10 (1):1–9.
  • Bortnikov, N., V. Novikov, A. Savko, N. Boeva, E. Zhegallo, E. Bushueva, A. Krainov, and D. Dmitriev. 2013. Structural-Morphological Features of Kaolinite from Clayey Rocks Subjected to Different Stages of Lithogenesis: Evidence from the Voronezh Anteclise. Lithology and Mineral Resources 48 (5):384–97. doi:10.1134/S0024490213050039.
  • Butler, O. M., T. Lewis, and C. Chen. 2021. Do soil chemical changes contribute to the dominance of blady grass (Imperata cylindrica) in surface fire-affected forests? Fire 4 (2):23. doi:10.3390/fire4020023.
  • Cabi. 2021. Imperata Cylindrica: Cogon Grass [ Online]. Wallingford, Oxfordshire, England: Centre for Agriculture and Bioscience International. Accessed 24th June 2021. Available: https://bit.ly/3xRBzsW.
  • Cai, J., Y. He, X. Yu, S. W. Banks, Y. Yang, X. Zhang, Y. Yu, R. Liu, and A. V. Bridgwater. 2017. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 76:309–22. doi:10.1016/j.rser.2017.03.072.
  • Cardoso, A. W., I. Oliveras, K. A. Abernethy, K. J. Jeffery, D. Lehmann, J. Edzang Ndong, I. Mcgregor, C. M. Belcher, W. J. Bond, and Y. S. Malhi. 2018. Grass species flammability, not biomass, drives changes in fire behavior at tropical forest-savanna transitions. Frontiers in Forests and Global Change 1:6. doi:10.3389/ffgc.2018.00006.
  • Çepelioğullar, Ö., and A. E. Pütün. 2013. Thermal and Kinetic Behaviour of Biomass and Plastic Wastes in Co-Pyrolysis. Energy Conversion and Management 75:263–70. doi:10.1016/j.enconman.2013.06.036.
  • Chikoye, D., F. Ekeleme, and U. Udensi. 2001. Imperata cylindrica suppression by intercropping cover crops in zea mays/manihot esculenta systems. Weed Science 49 (5):658–67. doi:10.1614/0043-1745(2001)049[0658:CSBICC]2.0.CO;2.
  • Dillon, W. W., D. Hiatt, and S. L. Flory. 2021. experimental manipulation of fuel structure to evaluate the potential ecological effects of fire. Forest Ecology and Management 482:118884. doi:10.1016/j.foreco.2020.118884.
  • Dutta, S., and M. K. Hossain. 2016. Infestation of Imperata cylindrica l. and its impacts on local communities in secondary forests of Sitakunda botanical garden and eco-park, Chittagong, Bangladesh. International Journal of Conservation Science 7 (1):167–180.
  • Enloe, S. F., R. D. Lucardi, N. J. Loewenstein, and D. K. Lauer. 2018. Response of twelve Florida cogongrass (Imperata cylindrica) populations to herbicide treatment. Invasive Plant Science and Management 11 (2):82–88. doi:10.1017/inp.2018.12.
  • Espinach, F., M. Delgado-Aguilar, J. Puig, F. Julian, S. Boufi, and P. Mutjé. 2015. Flexural properties of fully biodegradable alpha-grass fibers reinforced starch-based thermoplastics. Composites Part B: Engineering 81:98–106. doi:10.1016/j.compositesb.2015.07.004.
  • Eussen, J. H., S. Slamet, and D. Soeroto. 1976. Competition between Alang-Alang (Imperata cylindrica (L.) Beauv) and some crop plants.
  • Fang, S., H. Li, and B. Xie. 2008. Decomposition and nutrient release of four potential mulching materials for poplar plantations on upland sites. Agroforestry Systems 74 (1):27. doi:10.1007/s10457-008-9155-0.
  • Ferreira, B. T., L. J. Da Silva, T. H. Panzera, J. C. Santos, R. T. S. Freire, and F. Scarpa. 2019. Sisal-glass hybrid composites reinforced with silica microparticles. Polymer Testing 74:57–62. doi:10.1016/j.polymertesting.2018.12.026.
  • Garrity, D. P., M. Soekardi, M. Van Noordwijk, R. De La Cruz, P. Pathak, H. Gunasena, N. Van So, G. Huijun, and N. Majid. 1996. the Imperata grasslands of tropical Asia: area, distribution, and typology. Agroforestry Systems 36 (1–3):3–29. doi:10.1007/BF00142865.
  • Guna, V., M. Ilangovan, K. Adithya, C. Srinivas, S. Yogesh, G. Nagananda, K. Venkatesh, and N. Reddy. 2019. Biofibers and biocomposites from sabai grass: A unique renewable resource. Carbohydrate Polymers 218:243–49. doi:10.1016/j.carbpol.2019.04.085.
  • Heuzé, V., G. Tran, R. Baumont, D. Bastianelli, and F. Lebas. 2016. Alang-Alang (Imperata Cylindrica). Online]. Rome, Italy: INRA, CIRAD, AFZ and FAO. Accessed: February 5, 2021, https://www.feedipedia.org/node/425.
  • Hidayat, S., M. S. A. Bakar, Y. Yang, N. Phusunti, and A. Bridgwater. 2018. Characterisation and Py-Gc/Ms analysis of Imperata cylindrica as potential biomass for bio-oil production in Brunei darussalam. Journal of Analytical and Applied Pyrolysis 134:510–19. doi:10.1016/j.jaap.2018.07.018.
  • Holm, L. G., D. L. Plucknett, J. V. Pancho, and J. P. Herberger. 1977. The world’s worst weeds. distribution and biology. United States of America: University Press of Hawaii.
  • Kassim, A. S. M., A. M. Aripin, N. Ishak, N. H. H. Hairom, N. A. Fauzi, N. F. Razali, and M. H. Zainulabidin 2006. Potential of cogon grass (Imperata cylindrica) as an alternative fibre in paper-based industry.
  • Keshava, R., N. Muniyappa, and R. Gope. 2020. Bioactivity guided fractionation and elucidation of anti-cancer properties of Imperata cylindrica leaf extracts. Asian Pacific Journal of Cancer Prevention: APJCP 21 (3):707. doi:10.31557/APJCP.2020.21.3.707.
  • Khan, J. A., M. A. Khan, and R. Islam. 2014. Mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composites: effect of potassium dichromate as oxidizing agent. Fibres and Polymers 15 (11):2386–94. doi:10.1007/s12221-014-2386-y.
  • Khan, A., V. Raghunathan, D. L. Singaravelu, M. Sanjay, S. Siengchin, M. Jawaid, K. A. Alamry, and A. M. Asiri. 2020a. Extraction and characterization of cellulose fibers from the stem of momordica charantia. Journal of Natural Fibers 1–11. https://doi.org/10.1080/15440478.2020.1807442.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. Sanjay, S. Siengchin, M. Jawaid, K. A. Alamry, and A. M. Asiri. 2020b. Extraction and characterization of natural fibers from Citrullus lanatus climber. Journal of Natural Fibers 1–9. https://doi.org/10.1080/15440478.2020.1758281.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2019. Extraction and characterization of natural fiber from eleusine indica grass as reinforcement of sustainable fiber-reinforced polymer composites. Journal of Natural Fibers 1–9. https://doi.org/10.1080/15440478.2019.1697993.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2021. Characterization of natural fibers from Cortaderia selloana grass (pampas) as reinforcement material for the production of the composites. Journal of Natural Fibers 18 (11):1893–901. doi:10.1080/15440478.2019.1709110.
  • Kow, K.-W., R. Yusoff, A. A. Aziz, and E. Abdullah. 2014. Characterisation of bio-silica synthesised from cogon grass (Imperata cylindrica). Powder Technology 254:206–13. doi:10.1016/j.powtec.2014.01.018.
  • Kumar, R. S., and N. Durgam Muralidharan. 2020. Mechanical characteristics study of chemically modified kenaf fiber reinforced epoxy composites. Journal of Natural Fibers 1–11. https://doi.org/10.1080/15440478.2020.1818350.
  • Kumar, R. S., N. Muralidharan, and R. Sathyamurthy. 2020b. Optimisation of alkali treatment process parameters for kenaf fiber: experiments design. Journal of Natural Fibers 1–10. https://doi.org/10.1080/15440478.2020.1856276.
  • Kumar, R., S. Sivaganesan, P. Senthamaraikannan, S. Saravanakumar, A. Khan, S. Ajith Arul Daniel, and L. Loganathan. 2020a. Characterisation of new cellulosic fiber from the bark of Acacia Nilotica L. Plant. Journal of Natural Fibers 1–10. https://doi.org/10.1080/15440478.2020.1738305P.
  • Kuusipalo, J., G. Ådjers, Y. Jafarsidik, A. Otsamo, K. Tuomela, and R. Vuokko. 1995. Restoration of natural vegetation in degraded Imperata cylindrica grassland: Understorey development in forest plantations. Journal of Vegetation Science 6 (2):205–10. doi:10.2307/3236215.
  • Kwok, A. H. Y., Y. Wang, and W. S. Ho. 2016. Cytotoxic and pro-oxidative effects of Imperata cylindrica aerial part ethyl acetate extract in colorectal cancer in Vitro. Phytomedicine 23 (5):558–65. doi:10.1016/j.phymed.2016.02.015.
  • Lalthanpuii, P., and K. Lalchhandama. 2018. Imperata cylindrica: a noxious weed of pharmacological potentials. In Mizoram Science Congress 2018 (MSC 2018), 173–77. 3311GX Dordrecht, The Netherlands: Atlantis Press. https://doi.org/10.2991/msc-18.2018.28.
  • Liao, J., S. Zhang, and X. Tang. 2020. sound absorption of hemp fibers (cannabis sativa l.) based nonwoven fabrics and composites: A review. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2020.1764453.
  • Liu, W., A. K. Mohanty, P. Askeland, L. T. Drzal, and M. Misra. 2004. Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein-based biocomposites. Polymer 45 (22):7589–96. doi:10.1016/j.polymer.2004.09.009.
  • Lucardi, R. D., L. E. Wallace, and G. N. Ervin. 2020. Patterns of genetic diversity in highly invasive species: cogongrass (Imperata cylindrica) expansion in the invaded range of the Southern United States (Us). Plants 9 (4):423. doi:10.3390/plants9040423.
  • Luo, Y., J. Fan, V. L. Budarin, C. Hu, and J. H. Clark. 2017. Microwave-assisted hydrothermal selective dissolution and utilisation of hemicellulose in Phyllostachys Heterocycla Cv. Pubescens. Green Chemistry 19 (20):4889–99. doi:10.1039/C7GC02300F.
  • Martin, S. (2012). Impact of Cogongrass (Imperata Cylindrica) Presence and Management Strategies on Arthropod Natural Enemy Populations in Longleaf Pine Stands. Doctoral, PhD, Auburn University.
  • Mishra, R. K., and K. Mohanty. 2018. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology 251:63–74. doi:10.1016/j.biortech.2017.12.029.
  • Miura, K., and T. Maki. 1998. A simple method for estimating f (e) and k 0 (e) in the distributed activation energy model. Energy & Fuels 12 (5):864–69. doi:10.1021/ef970212q.
  • Mohanty, A. K., M. Misra, L. T. Drzal, S. E. Selke, B. R. Harte, and G. Hinrichsen. 2005. In Natural fibers, biopolymers, and biocomposites: An introduction, 17–51. Boca Raton, Florida, United States of America: CRC press.
  • Nishigaki, T., M. Shibata, S. Sugihara, A. D. Mvondo‐Ze, S. Araki, and S. Funakawa. 2017. Effect of mulching with vegetative residues on soil water erosion and water balance in an oxisol cropped by Cassava in East Cameroon. Land Degradation & Development 28 (2):682–90. doi:10.1002/ldr.2568.
  • Nyakuma, B. B., A. Ahmad, A. Johari, T. A. Tuan, O. Oladokun, and D. Y. Aminu. 2015. Non-isothermal kinetic analysis of oil palm empty fruit bunch pellets by thermogravimetric analysis. Chemical Engineering Transactions 45:1327–32.
  • Nyakuma, B. B., S. Wong, and O. Oladokun. 2019. Non-oxidative thermal decomposition of oil palm empty fruit bunch pellets: fuel characterisation, thermogravimetric, kinetic, and thermodynamic analyses. Biomass Conversion and Biorefinery. doi:10.1007/s13399-019-00568-1.
  • Nyakuma, B. B., S. L. Wong, O. Oladokun, A. A. Bello, H. U. Hambali, T. A. T. Abdullah, and K. Y. Wong. 2020. Review of the fuel properties, characterisation techniques, and pre-treatment technologies for oil palm empty fruit bunches. Biomass Conversion and Biorefinery. doi:10.1007/s13399-020-01133-x.
  • Nyakuma, B. B., S. Wong, L. N. Utume, T. A. T. Abdullah, M. Abba, O. Oladokun, T. J. P. Ivase, and E. B. Ogunbode. 2021. comprehensive characterisation of the morphological, thermal and kinetic degradation properties of Gluconacetobacter xylinus synthesised bacterial nanocellulose. Journal of Natural Fibers 1–14. doi:10.1080/15440478.2021.1907833.
  • Ogunbode, E. B., B. B. Nyakuma, R. A. Jimoh, T. A. Lawal, and H. G. Nmadu. 2021. Mechanical and microstructure properties of cassava peel ash–based kenaf bio-fibrous concrete composites. Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-01588-6.
  • Oladokun, O., A. Ahmad, T. Abdullah, B. Nyakuma, A.-H. Bello, and A. Al-Shatri. 2016. Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica. Applied Thermal Engineering 105:931–40. doi:10.1016/j.applthermaleng.2016.04.165.
  • Onuegbu, T. U., I. Ogbu, N. O. Ilochi, U. Ekpunobi, and A. S. Ogbuagu. 2010. Enhancing the properties of coal briquette using spear grass (Imperata cylindrica). Leonardo Journal of Sciences 17:47–58.
  • Pickford, S., M. Suharti, and A. Wibowo. 1992. A note on fuelbeds and fire behavior in Alang-Alang (Imperata cylindrica). International Journal of Wildland Fire 2 (1):41–46. doi:10.1071/WF9920041.
  • Rachini, A., M. Le Troedec, C. Peyratout, and A. Smith. 2009. Comparison of the thermal degradation of natural, alkali‐treated and silane‐treated hemp fibers under air and an inert atmosphere. Journal of Applied Polymer Science 112 (1):226–34. doi:10.1002/app.29412.
  • Reddy, K. O., C. U. Maheswari, M. Shukla, and A. V. Rajulu. 2012. Chemical composition and structural characterization of Napier grass fibers. Materials Letters 67 (1):35–38. doi:10.1016/j.matlet.2011.09.027.
  • Sair, S., A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, F. O. Hassani, A. Laachachi, and A. El Bouari. 2017. Effect of surface modification on morphological, mechanical and thermal conductivity of hemp fiber: characterization of the interface of hemp–polyurethane composite. Case Studies in Thermal Engineering 10:550–59. doi:10.1016/j.csite.2017.10.012.
  • Salema, A. A., R. M. W. Ting, and Y. K. Shang. 2019. Pyrolysis of blend (oil palm biomass and sawdust) biomass using Tg-Ms. Bioresource Technology 274:439–46. doi:10.1016/j.biortech.2018.12.014.
  • Sangpatch, T., N. Supakata, V. Kanokkantapong, and B. Jongsomjit. 2019. Fuel oil generated from the cogon grass-derived al-si (Imperata cylindrica (l.) Beauv) catalysed pyrolysis of waste plastics. Heliyon 5 (8):e02324. doi:10.1016/j.heliyon.2019.e02324.
  • Sellers, B. A., J. A. Ferrell, G. E. Macdonald, K. A. Langeland, and S. L. Flory. 2012. Cogongrass (Imperata cylindrica) biology, ecology, and management in Florida grazing lands. EDIS 1–5.
  • Sengupta, P., P. C. Saikia, and P. C. Borthakur. 2008. Sem-edx characterization of an iron-rich kaolinite clay. Journal of Scientific and Research 67:812–18.
  • Senthamaraikannan, P., S. Saravanakumar, M. Sanjay, M. Jawaid, and S. Siengchin. 2019. Physico-Chemical and thermal properties of untreated and treated acacia planifrons bark fibers for composite reinforcement. Materials Letters 240:221–24. doi:10.1016/j.matlet.2019.01.024.
  • Shen, Y., H. Tang, W. Wu, H. Shang, D. Zhang, X. Zhan, and B. Xing. 2020. Role of nano-biochar in attenuating the allelopathic effect from Imperata cylindrica on rice seedlings. Environmental Science: Nano 7:116–26.
  • Slopiecka, K., P. Bartocci, and F. Fantozzi. 2012. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy 97:491–97. doi:10.1016/j.apenergy.2011.12.056.
  • Sun, W. G., H. Zhao, H. X. Yan, B. B. Sun, S. S. Dong, C. W. Zhang, and S. Qin. 2012. The pyrolysis characteristics and kinetics of Jerusalem artichoke stalk using thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (7):626–35. doi:10.1080/15567036.2011.615006.
  • Sutomo, S., and D. Fardila. 2012. Plant community and soil relationship following wildfires from Nuees Ardentes on Mt. Merapi. Biotropica 19:1–9.
  • Wang, Y., J. Z. Shen, Y. W. Chan, and W. S. Ho. 2018. Identification and growth inhibitory activity of the chemical constituents from Imperata cylindrica aerial part ethyl acetate extract. Molecules 23 (7):1807. doi:10.3390/molecules23071807.
  • Xu, J., M. Gao, H. Guo, X. Liu, Z. Li, H. Wang, and C. Tian. 2002. Study on the thermal degradation of cellulosic fibers treated with flame retardants. Journal of Fire Sciences 20 (3):227–35. doi:10.1177/0734904102020003905.
  • Xuan, T. D., T. Toyama, M. Fukuta, T. D. Khanh, and S. Tawata. 2009. Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.). Journal of Agricultural and Food Chemistry 57 (20):9448–53. doi:10.1021/jf902310j.
  • Zulfiana, D., A. Karimah, S. H. Anita, N. Masruchin, K. Wijaya, L. Suryanegara, W. Fatriasari, and A. Fudholi. 2020. Antimicrobial Imperata cylindrica paper coated with anionic nanocellulose crosslinked with cationic ions. International Journal of Biological Macromolecules 164:892–901. doi:10.1016/j.ijbiomac.2020.07.102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.