430
Views
11
CrossRef citations to date
0
Altmetric
Review

Systematic Review on Reinforcing Mortars with Natural Fibers: Challenges of Environment-Friendly Option

, ORCID Icon &
Pages 14262-14286 | Published online: 17 Apr 2022

References

  • Achour, A., F. Ghomari, and N. Belayachi. 2017. Properties of cementitious mortars reinforced with natural fibers. Journal of Adhesion Science and Technology 31 (17):1938–62. doi:10.1080/01694243.2017.1290572.
  • Afonso, J. C., and G. Ranalli. 2005. Elastic properties of three-phase composites: Analytical model based on the modified shear-lag model and the method of cells. Composites Science and Technology 65 (7):1264–75. doi:10.1016/j.compscitech.2004.12.033.
  • Ahmed, W., and C. W. Lim. 2021. Production of sustainable and structural fiber reinforced recycled aggregate concrete with improved fracture properties: A review. Journal of Cleaner Production 279:123832. doi:10.1016/j.jclepro.2020.123832.
  • Angelin, A. F., R. C. C. Lintz, L. A. Gachet-Barbosa, and W. R. Osório. 2017. The effects of porosity on mechanical behavior and water absorption of an environmentally friendly cement mortar with recycled rubber. Construction and Building Materials 151:534–45. doi:10.1016/j.conbuildmat.2017.06.061.
  • Anike, E. E., M. Saidani, E. L. Ganjian, M. Tyrer, and A. O. Olubanwo. 2019. The potency of recycled aggregate in new concrete: A review. Construction Innovation 19 (4):594–613. doi:10.1108/CI-07-2018-0056.
  • Ardanuy, M., J. Claramunt, and R. D. Toledo Filho. 2015. Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials 79:115–28. doi:10.1016/j.conbuildmat.2015.01.035.
  • Ataie, F. 2018. Influence of rice straw fibers on concrete strength and drying shrinkage. Sustainability 10 (7): 2445. doi:10.3390/su10072445.
  • Ávila, F., E. Puertas, and R. Gallego. 2021. Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Construction and Building Materials 270:121435. doi:10.1016/j.conbuildmat.2020.121435.
  • Ban, Y., W. Zhi, M. Fei, W. Liu, Y. Demei, F. Tengfei, and R. Qiu. 2020. Preparation and Performance of Cement Mortar Reinforced by Modified Bamboo Fibers. Polymers 12(11). doi:10.3390/polym12112650.
  • Belaadi, A., S. Amroune, and M. Bourchak. 2019. Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics. The International Journal of Advanced Manufacturing Technology 106 (5–6):1753–74. doi:10.1007/s00170-019-04628-8.
  • Belaadi, A., A. Bezazi, M. Bourchak, F. Scarpa, and C. Zhu. 2014. Thermochemical and statistical mechanical properties of natural sisal fibres. Composites Part B: Engineering 67:481–89. doi:10.1016/j.compositesb.2014.07.029.
  • Belkadi, A. A., S. Aggoun, C. Amouri, A. Geuttala, and H. Houari. 2018. Effect of vegetable and synthetic fibers on mechanical performance and durability of metakaolin-based mortars. Journal of Adhesion Science and Technology 32 (15):15. doi:10.1080/01694243.2018.1442647.
  • Bella, G. D., V. Fiore, G. Galtieri, C. Borsellino, and A. Valenza. 2014. Effects of natural fibres reinforcement in lime plasters (Kenaf and Sisal vs Polypropylene). Construction and Building Materials 58:159–65. doi:10.1016/j.conbuildmat.2014.02.026.
  • Benmansour, N., B. Agoudjil, A. Gherabli, A. Kareche, and A. Boudenne. 2014. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy and Buildings 81:98–104. doi:10.1016/j.enbuild.2014.05.032.
  • Benzannache, N., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. Improving the mechanical performance of biocomposite plaster/ washingtonian filifira fibres using the RSM method. Journal of Building Engineering 33:101840. doi:10.1016/j.jobe.2020.101840.
  • Booya, E., H. Ghaednia, S. Das, and H. Pande. 2018. Durability of cementitious materials reinforced with various kraft pulp fibers. Construction and Building Materials 191:1191–200. doi:10.1016/j.conbuildmat.2018.10.139.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. 2020. The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: Optimization using RSM. Journal of Natural Fibers. doi:10.1080/15440478.2020.1724236.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. 2021. The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: Part II optimization comparison between ANN and RSM statistics. Journal of Natural Fibers. doi:10.1080/15440478.2021.1964129.
  • Boumaaza, M., A. Belaadi, M. Bourchak, M. Jawaid, and H. Satha. 2022. Comparative study of flexural properties prediction of Washingtonia filifera rachis biochar bio-mortar by ANN and RSM models. Construction and Building Materials 318:125985. doi:10.1016/j.conbuildmat.2021.125985.
  • Braiek, A., M. Karkri, A. Adili, L. Ibos, and S. B. Nasrallah. 2017. Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy and Buildings 140:268–79. doi:10.1016/j.enbuild.2017.02.001.
  • Cai, M., H. Takagi, A. N. Nakagaito, K. Kusaka, M. Katoh, and Y. Li. 2015. Influence of alkali concentration on morphology and tensile properties of abaca fibers. Advanced Materials Research 1110:302–05. https://doi.org/10.4028/www.scientific.net/AMR.1110.302
  • Cardinale, T., G. Arleo, F. Bernardo, A. Feo, and P. De Fazio. 2017. Investigations on thermal and mechanical properties of cement mortar with reed and straw fibers. International Journal of Heat and Technology 35 (1):375–82. doi:10.18280/ijht.35Sp0151.
  • Carvalho Bello, C. B. D., I. Boem, A. Cecchi, N. Gattesco, and D. V. Oliveira. 2019. Experimental tests for the characterization of sisal fiber reinforced cementitious matrix for strengthening masonry structures. Construction and Building Materials 219:44–55. doi:10.1016/j.conbuildmat.2019.05.168.
  • Chafei, S., M. Gomina, F. Khadraoui, and M. Boutouil. 2017. Dependence of the properties of cementitious composites on the nature of the hydraulic binder coating the reinforcing flax fibers. Journal of Mechanical and Civil Engineering 14 (3):2278–1684. doi:10.9790/1684-1406012733.
  • Chaitanya, S., and I. Singh. 2018. Sisal fiber-reinforced green composites: Effect of ecofriendly fiber treatment. Polymer Composites 12 (36):4310–21. doi:10.1002/pc.24511.
  • Chen, M., H. Zhong, L. Chen, Y. Zhang, and M. Zhang. 2021. Engineering properties and sustainability assessment of recycled fibre reinforced rubberised cementitious composite. Journal of Cleaner Production 278:123996. doi:10.1016/j.jclepro.2020.123996.
  • Chen, B., H. Zhu, B. Li, M. Sham, and Z. Li. 2020. Study on the fire resistance performance of cementitious composites containing Recycled Glass Cullets (RGCs). Construction and Building Materials 242:117992. doi:10.1016/j.conbuildmat.2019.117992.
  • Çomak, B., A. Bideci, and Ö. S. Bideci. 2018. Effects of hemp fibers on characteristics of cement based mortar. Construction and Building Materials 169:794–99. doi:10.1016/j.conbuildmat.2018.03.029.
  • De Almeida Melo Filho, J., F. De Andrade Silva, and R. D. Toledo Filho. 2013. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites 40:30–39. doi:10.1016/j.cemconcomp.2013.04.003.
  • De Almeida Melo Filho, J., F. de Andrade Silva, and R. D. Toledo Filho. 2013. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites 40:30–39. https://doi.org/10.1016/j.cemconcomp.2013.04.003
  • De Andrade Silva, F., B. Mobasher, and R. D. T. Filho. 2009. Cracking mechanisms in durable sisal fiber reinforced cement composites. Cement and Concrete Composites 31 (10):721–30. doi:10.1016/j.cemconcomp.2009.07.004.
  • De Azevedo, A. R. G., Markssuel Teixeira Marvila, B. A. Tayeh, D. Cecchin, A. Camposo Pereira, and S. Neves Monteiro. 2021. Technological Performance of Açaí Natural Fibre Reinforced Cement-Based Mortars. Journal of Building Engineering 33: 101675. https://doi.org/10.1016/j.jobe.2020.101675
  • De Gutiérrez, R. M., L. N. Díaz, and S. Delvasto. 2005. Effect of pozzolans on the performance of fiber-reinforced mortars, cement and concrete composites 27(5):593–98. doi:10.1016/j.cemconcomp.2004.09.010.
  • De Pellegrin, M. Z., J. Acordi, and O. R. K. Montedo. 2019. Influence of the length and the content of cellulose fibers obtained from sugarcane bagasse on the mechanical properties of fiber-reinforced mortar composites. Journal of Natural Fibers 18 (1):111–21. doi:10.1080/15440478.2019.1612311.
  • Deb, S., N. Mitra, S. Maitra, and S. B. Majumdar. 2020. Comparison of mechanical performance and life cycle cost of natural and synthetic fiber-reinforced cementitious composites. Journal of Materials in Civil Engineering 32 (6):04020150. doi:10.1061/(ASCE)MT.19435533.0003219.
  • Delannoy, G., S. Marceau, P. Glé, E. Gourlay, M. G. Minerbe, D. Diafi, I. Nour, S. Amziane, and F. Farcas. 2019. Influence of binder on the multiscale properties of hemp concretes. European Journal of Environmental and Civil Engineering 23 (5):609–25. doi:10.1080/19648189.2018.1457571.
  • Dilbas, H., and Ö. Çakır. 2020. Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete. Construction and Building Materials 254:119216. doi:10.1016/j.conbuildmat.2020.119216.
  • Djoudi, A., M. M. Khenfer, A. Bali, and T. Bouziani. 2014. Effect of the addition of date palm fibers on thermal properties of plaster concrete: Experimental study and modeling. Journal of Adhesion Science and Technology 28 (20):2100–11. doi:10.1080/01694243.2014.948363.
  • Donatelli, A., D. Cuna, M. A. Tagliente, M. L. Protopapa, A. Mevoli, P. Aversa, C. Blasi, L. Capodieci, and V. A. M. Luprano. 2017. Effect of treatments on the aging behaviour of hemp fibres for building construction in the mediterranean area. Journal of Building Engineering 11:37–47. doi:10.1016/j.jobe.2017.03.013.
  • Ejsmont, K., B. Gladysz, D. Corti, F. Castaño, W. M. Mohammed, J. L. M. Lastra, and P. Foroudi. 2020. Towards ‘lean industry 4.0 ʹ–current trends and future perspectives. Cogent Business & Management 7 (1):1781995. doi:10.1080/23311975.2020.1781995.
  • Faraj, R. H., H. F. H. Ali, A. F. H. Sherwani, B. R. Hassan, and H. Karim. 2020. Use of recycled plastic in self-compacting concrete: A comprehensive review on fresh and mechanical properties. Journal of Building Engineering 30:101283. doi:10.1016/j.jobe.2020.101283.
  • Fatma, N., L. Allègue, M. Salem, R. Zitoune, and M. Zidi. 2019. The effect of doum palm fibers on the mechanical and thermal properties of gypsum mortar. Journal of Composite Materials 53 (19):19. doi:10.1177/0021998319838319.
  • Ferrara, G., M. Pepe, E. Martinelli, and R. D. Tolêdo Filho. 2019. Influence of an impregnation treatment on the morphology and mechanical behaviour of flax yarns embedded in hydraulic lime mortar. Fibers 7 (4):30. doi:10.3390/fib7040030.
  • Ferreira, S. R., E. Martinelli, M. Pepe, F. De Andrade Silva, and R. D. Toledo Filho. 2016. Inverse identification of the bond behavior for jute fibers in cementitious matrix. Composites Part B: Engineering 95:440–52. doi:10.1016/j.compositesb.2016.03.097.
  • Ferreira, S. R., A. R. S. Neto, F, F. de Andrade Silva, G. de Souza, and R. D. Toledo Filho. 2020. The influence of carboxylated styrene butadiene rubber coating on the mechanical performance of vegetable fibers and on their interface with a cement matrix. Construction and Building Materials 262:120770. doi:10.1016/j.conbuildmat.2020.120770.
  • Fiore, V., G. Di Bella, and A. Valenza. 2015. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering 68:14–21. doi:10.1016/j.compositesb.2014.08.025.
  • Fiore, V., T. Scalici, G. Di Bella, and A. Valenza. 2015. A review on basalt fibre and its composites. Composites Part B: Engineering 74:74–94. doi:10.1016/j.compositesb.2014.12.034.
  • Fiore, V., T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, and A. Valenza. 2016. A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering 85:150–60. doi:10.1016/j.compositesb.2015.09.028.
  • Fiore, V., T. Scalici, and A. Valenza. 2018. Effect of sodium bicarbonate treatment on mechanical properties of flax-reinforced epoxy composite materials. Journal of Composite Materials 52 (8):1061–72. doi:10.1177/0021998317720009.
  • Ghaffar, S. H., M. Al-Kheetan, P. Ewens, T. Wang, and J. Zhuang. 2020. Investigation of the interfacial bonding between flax/wool twine and various cementitious matrices in mortar composites. Construction and Building Materials 239:117833. doi:10.1016/j.conbuildmat.2019.117833.
  • Gu, H. 2009. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Materials & Design 30 (9):3931–34. doi:10.1016/j.matdes.2009.01.035.
  • Hamzaoui, R., S. Guessasma, K. Abahri, and O. Bouchenafa. 2020. Formulation of modified cement mortars using optimal combination of fly ashes, shiv, and hemp fibers. Journal of Materials in Civil Engineering 32 (2):04019354. doi:10.1061/(ASCE)MT.1943-5533.0002918.
  • Hamzaoui, R., S. Guessasma, B. Mecheri, A. M. Eshtiaghi, and A. Bennabi. 2014. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes. Materials & Design (1980-2015) 56:60–68. doi:10.1016/j.matdes.2013.10.084.
  • Hospodarova, V., N. Stevulova, J. Briancin, and K. Kostelanska. 2018. Investigation of waste paper cellulosic fibers utilization into cement based building materials. Buildings 8 (3):3. doi:10.3390/buildings8030043.
  • Hosseini, S. A. 2020. Application of various types of recycled waste materials in concrete constructions. Advances in Concrete Construction 9 (5):479–89. doi:10.12989/acc.2020.9.5.479.
  • Hosseini, M. R., I. Martek, E. K. Zavadskas, A. A. Aibinu, M. Arashpour, and N. Chileshe. 2018. Critical evaluation of off-site construction research: A scientometric analysis. Automation in Construction 87:235–47. doi:10.1016/j.autcon.2017.12.002.
  • Hwang, C. L., V. A. Tran, J. W. Hong, and Y. C. Hsieh. 2016. Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites. Construction and Building Materials 127:984–92. doi:10.1016/j.conbuildmat.2016.09.118.
  • Irki, I., M. Euldji, H. Bensaber, and C. Settari. 2018. Characterization of stem phoenix fibres as potential reinforcement of self compacting mortar. Journal of Adhesion Science and Technology 32 (15):1629–42. doi:10.1080/01694243.2018.1442654.
  • Iucolano, F., L. Boccarusso, and A. Langella. 2019. Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: impact and flexural behaviour. Composites Part B: Engineering 175:107073. doi:10.1016/j.compositesb.2019.107073.
  • Iucolano, F., D. Caputo, F. Leboffe, and B. Liguori. 2015. Mechanical behavior of plaster reinforced with abaca fibers. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2015.09.020
  • Iucolano, F., B. Liguori, D. Caputo, F. Colangelo, and R. Cioffi. 2013. Recycled plastic aggregate in mortars composition: Effect on physical and mechanical properties. Materials & Design (1980-2015) 52:916–22. doi:10.1016/j.matdes.2013.06.025.
  • Izquierdo, I. S., O. S. Izquierdo, M. A. Ramalho, and A. Taliercio. 2017. Sisal fiber reinforced hollow concrete blocks for structural applications: Testing and modeling. Construction and Building Materials 151:98–112. doi:10.1016/j.conbuildmat.2017.06.072.
  • Jan, N., and V. E. Ludo.2010. Software survey : VOSviewer , a computer program for bibliometric mapping. p. 523–538. https://doi.org/10.1007/s11192-009-0146-3
  • Jin, R., S. Gao, A. Cheshmehzangi, and E. Aboagye-Nimo. 2018. A holistic review of off-site construction literature published between 2008 and 2018. Journal of Cleaner Production 202:1202–19. doi:10.1016/j.jclepro.2018.08.195.
  • Juradin, S., I. Boko, I. Netinger Grubeša, D. Jozić, and S. Mrakovčić.2019. Influence of harvesting time and maceration method of Spanish Broom (Spartium junceum L.) fibers on mechanical properties of reinforced cement mortar. Construction and Building Materials 225:243–255. https://doi.org/10.1016/j.conbuildmat.2019.07.207
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Kareche, A., B. Agoudjil, B. Haba, and A. Boudenne. 2020. Study on the durability of new construction materials based on mortar reinforced with date palm fibers wastes. Waste and Biomass Valorization 11 (7):3801–09. doi:10.1007/S12649-019-00669-Y.
  • Krobba, B., M. Bouhicha, S. Kenai, and L. Courard. 2018. Formulation of low cost eco-repair mortar based on dune sand and stipa tenacissima microfibers plant. Construction and Building Materials 171:950–59. doi:10.1016/j.conbuildmat.2018.03.200.
  • Latroch, N., A. S. Benosman, N. E. Bouhamou, Y. Senhadji, and M. Mouli. 2018. Physico-mechanical and thermal properties of composite mortars containing lightweight aggregates of expanded polyvinyl chloride. Construction and Building Materials 175:77–87. doi:10.1016/j.conbuildmat.2018.04.173.
  • Lei, B., H. Liu, Z. Yao, and Z. Tang. 2019. Experimental study on the compressive strength, damping and interfacial transition zone properties of modified recycled aggregate concrete. Royal Society Open Science 6 (12):190813. doi:10.1098/rsos.190813.
  • Lertwattanaruk, P., and A. Suntijitto. 2015. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials 94:664–69. doi:10.1016/j.conbuildmat.2015.07.154.
  • Li, Z., L. Wang, and X. Wang.2006. Flexural characteristics of coir fiber reinforced cementitious composites. Fibers and Polymers. https://doi.org/10.1007/BF02875686
  • Lima, P. R. L., J. A. O. Barros, D. J. Santos, C. M. Fontes, J. M. F. Lima, and R. Toledo Filho. 2019. Experimental and numerical analysis of short sisal fiber-cement composites produced with recycled matrix. European Journal of Environmental and Civil Engineering 23 (1):70–84. doi:10.1080/19648189.2016.1271357.
  • Lima, P. R. L., H. M. Santos, G. P. Camilloto, and R. S. Cruz. 2017. Effect of surface biopolymeric treatment on sisal fiber properties and fiber-cement bond. Journal of Engineered Fibers and Fabrics 12 (2):155892501701200. doi:10.1177/155892501701200207.
  • Liu, K., Y. Li, F. Wang, J. Ren, and H. Xie. 2018. Modeling and experimental study of multiple factors on mechanical strength of iron sand modified cement mortars. Construction and Building Materials 178:144–52. doi:10.1016/j.conbuildmat.2018.05.072.
  • Luhar, S., S. Chaudhary, and I. Luhar. 2018. Thermal resistance of fly ash based rubberized geopolymer concrete. Journal of Building Engineering 19:420–28. doi:10.1016/j.jobe.2018.05.025.
  • Merli, R., M. Preziosi, A. Acampora, M. C. Lucchetti, and E. Petrucci. 2020. Recycled fibers in reinforced concrete: A systematic literature review. Journal of Cleaner Production 248:119207. doi:10.1016/j.jclepro.2019.119207.
  • Mir, S. S., N. Nafsin, M. Hasan, N. Hasan, and A. Hassan. 2013. Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Materials & Design (1980-2015) 52:251–57. doi:10.1016/j.matdes.2013.05.062.
  • Mostefai, N., R. Hamzaoui, S. Guessasma, A. Aw, and H. Nouri. 2015. Microstructure and mechanical performance of modified hemp fibre and shiv mortars: Discovering the optimal formulation. Materials & Design 84:359–71. doi:10.1016/j.matdes.2015.06.102.
  • Nematzadeh, M., A. A. Shahmansouri, and M. Fakoor. 2020. Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP. Construction and Building Materials 252:119057. doi:10.1016/j.conbuildmat.2020.119057.
  • Onuaguluchi, O., and N. Banthia. 2016. Plant-based natural fibre reinforced cement composites: A review. Cement & Concrete Composites 68:96–108. doi:10.1016/j.cemconcomp.2016.02.014.
  • Page, J., F. Khadraoui, M. Gomina, and M. Boutouil. 2021. Enhancement of the long-term mechanical performance of flax fiber-reinforced cementitious composites by using alternative binders. Journal of Building Engineering 40:102323. doi:10.1016/j.jobe.2021.102323.
  • Poletanovic, B., J. Dragas, M. Komljenovic, and I. Merta. 2020. Physical and Mechanical Properties of Hemp Fibre Reinforced Alkali-Activated Fly Ash and Fly Ash/Slag Mortars. Construction and Building Materials 259: 119677. https://doi.org/10.1016/j.conbuildmat.2020.119677
  • Rachini, A., M. Le Troedec, C. Peyratout, and A. Smith. 2009. Comparison of the thermal degradation of natural, alkali-treated and silane-treated hemp fibers under air and an inert atmosphere. Journal of Applied Polymer Science 112 (1):226–34. doi:10.1002/app.29412.
  • Ramakrishna, G., and S. Priyadharshini. 2018. Effect of embedment length of untreated natural fi bres on the bond behaviour in cement mortar. Frontiers of Structural and Civil Engineering 12 (4):454–60. doi:10.1007/s11709-017-0454-2.
  • Ramakrishna, G., and T. Sundararajan. 2005. Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study. Cement and Concrete Composites 27 (5):547–53. doi:10.1016/j.cemconcomp.2004.09.006.
  • Ramakrishna, G., and T. Sundararajan. 2005. Studies on the Durability of Natural Fibres and the Effect of Corroded Fibres on the Strength of Mortar. Cement and Concrete Composites 27 (5): 575–82 https://doi.org/10.1016/j.cemconcomp.2004.09.008. .
  • Reis, J.M.L., 2012. Sisal fiber polymer mortar composites: Introductory fracture mechanics approach. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2012.07.088
  • Rokbi, M., B. Baali, Z. E. A. Rahmouni, and H. Latteli. 2019. Mechanical properties of polymer concrete made with jute fabric and waste marble powder at various woven orientations. International Journal of Environmental Science and Technology 16 (9):5087–94. doi:10.1007/s13762-019-02367-7.
  • Sánchez, M. L., W. Patiño, and J. Cárdenas. 2020. Physical-mechanical properties of bamboo fibers-reinforced biocomposites: Influence of Surface Treatment of Fibers. Journal of Building Engineering 28:101058. doi:10.1016/j.jobe.2019.101058.
  • Soltan, D.G., P. das Neves, A. Olvera, H. Savastano Junior, and V. C. Li.2017. Introducing a curauá fiber reinforced cement-based composite with strain-hardening behavior. Industrial Crops and Products 103:1–12. https://doi.org/10.1016/j.indcrop.2017.03.016
  • Thanushan, K., Y. Yogananth, P. Sangeeth, J. G. Coonghe, and N. Sathiparan. 2019. Strength and durability characteristics of coconut fibre reinforced earth cement blocks. Journal of Natural Fibers 18 (6):1–16. doi:10.1080/15440478.2019.1652220.
  • Tolêdo Filho, R. D., K. Ghavami, G. L. England, and K. Scrivener. 2003. Development of Vegetable Fibre–Mortar Composites of Improved Durability. Cement and Concrete Composites 25 (2):185–96. doi:10.1016/S0958-9465(02)00018-5.
  • Tolêdo Filho, R. D., and M. A. Sanjuán. 1999. Effect of low modulus sisal and polypropylene fibre on the free and restrained shrinkage of mortars at early age. Cement and Concrete Research 29 (10):1597–604. doi:10.1016/S0008-8846(99)00136-2.
  • Tolêdo Filho, R. D., K. Scrivener, G. L. England, and K. Ghavami. 2000. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cement and Concrete Composites 22 (2):127–43. doi:10.1016/S0958-9465(99)00039-6.
  • Tong, Y., S. Zhao, J. Ma, L. Wang, Y. Zhang, Y. Gao, and Y. M. Xie. 2014. Improving cracking and drying shrinkage properties of cement mortar by adding chemically treated luffa fibres. Construction and Building Materials 71:327–33. doi:10.1016/j.conbuildmat.2014.08.077.
  • Tonoli, G. H. D., M. N. Belgacem, G. Siqueira, J. Bras, H. Savastano, and F. A. R. Lahr. 2013. Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cement and Concrete Composites 37:68–75. doi:10.1016/j.cemconcomp.2012.12.004.
  • Tonoli, G. H. D., S. F. Santos, H. Savastano, S. Delvasto, R. ss, and M. Del M. Lopez de Murphy. 2011. Effects of natural weathering on microstructure and mineral composition of cementitious roofing tiles reinforced with fique fibre. Cement and Concrete Composites 33 (2):225–32. doi:10.1016/j.cemconcomp.2010.10.013.
  • Wei, J. 2018. Degradation behavior and kinetics of sisal fiber in pore solutions of sustainable cementitious composite containing metakaolin. Polymer Degradation and Stability 150:1–12. doi:10.1016/j.polymdegradstab.2018.01.027.
  • Wei, J., and C. Meyer.2017. Degradation of natural fiber in ternary blended cement composites containing metakaolin and montmorillonite. Corrosion Science 120:42–60. https://doi.org/10.1016/j.corsci.2016.12.004
  • Wei, J., S. Ma, and D. S. G. Thomas. 2016. Correlation between hydration of cement and durability of natural fiber-reinforced cement composites. Corrosion Science 106:1–15. doi:10.1016/j.corsci.2016.01.020.
  • Xie, X., G. Gou, X. Wei, Z. Zhou, M. Jiang, X. Xu, Z. Wang, and D. Hui.2016. Influence of pretreatment of rice straw on hydration of straw fiber filled cement based composites. Construction and Building Materials 113:449–455. https://doi.org/10.1016/j.conbuildmat.2016.03.088
  • Zakaria, M., M. Ahmed, M. Hoque, and A. Shaid. 2020. A comparative study of the mechanical properties of jute fiber and yarn reinforced concrete composites. Journal of Natural Fibers 17 (5):676–87. doi:10.1080/15440478.2018.1525465.
  • W. P. Zakka, N. H. Abdul Shukor Lim and M. C. Khun (2021). A scientometric review of geopolymer concrete. Journal of Cleaner Production. 280: 124353 https://doi.org/10.1016/j.jclepro.2020.124353.
  • Zhou, X., S. H. Ghaffar, W. Dong, O. Oladiran, and M. Fan. 2013. Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites. Materials & Design 49:35–47. doi:10.1016/j.matdes.2013.01.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.