256
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of ZnCl2 Activated Raising Powder of Cotton Fabrics for Acid and Basic Dye Adsorption: A Way to Reuse Cellulosic Wastes for Sustainable Production

, , , &
Pages 14299-14317 | Published online: 17 Apr 2022

References

  • Abkenar, S. S., R. M. A. Malek, and F. Mazaheri. 2015. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies. Journal of Environmental Management 163:53e61. doi:10.1016/j.jenvman.2015.08.003.
  • Ahsaine, H. A., M. Zbair, Z. Anfar, Y. Naciri, R. El Haouti, N. El Alem, and M. Ezahri. 2018. Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: Kinetics, equilibrium isotherms and surface statistical modelling. Materials Today Chemistry 8:121–32. doi:10.1016/j.mtchem.2018.03.004.
  • Akkouche, F., F. Boudrahem, I. Yahiaoui, C. Vial, F. Audonnet, and F. Aissani-Benissad. 2020. Cotton textile waste valorization for removal of tetracycline and paracetamol alone and in mixtures from aqueous solutions: Effects of H3PO4 as an oxidizing agent. Water Environment Research 93:464–78. doi:10.1002/wer.1449.
  • Aksu, Z., and I. Isoglu. 2006. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution. Journal of Hazardous Materials 137:418–30. doi:10.1016/j.jhazmat.2006.02.019.
  • Altintig, E., M. Yenigun, A. Sari, H. Altundag, M. Tuzen, and T. A. Saleh. 2021. Facile synthesis of zinc oxide nanoparticles loaded activated carbon as an eco-friendly adsorbent for ultra-removal of malachite green from water. Environmental Technology & Innovation 21:101305. doi:10.1016/j.eti.2020.101305.
  • Bediako, J. K., W. Wei, and Y. S. Yun. 2016a. Conversion of waste textile cellulose fibers into heavy metal adsorbents. Journal of Industrial and Engineering Chemistry 43:61–68. doi:10.1016/j.jiec.2016.07.048.
  • Bediako, J. K., W. Wei, and Y. S. Yun. 2016b. Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption. Journal of the Taiwan Institute of Chemical Engineers 63:250–58. doi:10.1016/j.jtice.2016.03.009.
  • Benmahdi, F., K. Oulmi, S. Khettaf, M. Kolli, O. Merdrignac-Conanec, and P. Mandin. 2021. Synthesis and characterization of microporous granular activated carbon from Silver berry seeds using ZnCl2 activation. Fullerenes, Nanotubes and Carbon Nanostructures 29:657–69. doi:10.1080/1536383X.2021.1878154.
  • Bilgic, C. 2008. Investigation of the factors affecting the removal of an acid dye from aqueous solution by adsorption using bentonite and sepiolite. Adsorption Science & Technology 26:363–72. doi:10.1260/026361708787548765.
  • Blackburn, R. S., and S. M. Burkinshaw. 2002. A greener approach to cotton dyeings. Part 2: Application of 1:2 metal complex acid dyes. Green Chemistry 4 (3):261–65. doi:10.1039/b201893d.
  • Cardoso, N. F., R. B. Pinto, E. C. Lima, T. Calvete, C. V. Amavisca, B. Royer, M. L. Cunha, T. H. M. Fernandes, and I. S. Pinto. 2011. Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination 269:92–103. doi:10.1016/j.desal.2010.10.047.
  • Cifci, D. I., and S. Meric. 2017a. Single and binary adsorption of iron and manganese in synthetic water using activated pumice composites: Effect of monovalent and divalent ions, desorption and reuse isotherms. Desalination and Water Treatment 71:52–61. doi:10.5004/dwt.2017.20632.
  • Cifci, D. I., and S. Meric. 2017b. Manganese adsorption by iron impregnated pumice composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 522:279–86. doi:10.1016/j.colsurfa.2017.03.004.
  • Cinar, S., U. H. Kaynar, T. Aydemir, S. Cam Kaynar, and M. Ayvacikli. 2017. An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beads. International Journal of Biological Macromolecules 96:459–65. doi:10.1016/j.ijbiomac.2016.12.021.
  • Deng, H., J. Lu, G. Li, G. Zhang, and X. Wang. 2011. Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chemical Engineering Journal 172:326–34. doi:10.1016/j.cej.2011.06.013.
  • Ekrami, E., F. Dadashian, and M. Arami. 2015. Adsorption of methylene blue by waste cotton activated carbon: Equilibrium, kinetics, and thermodynamic studies. Desalination and Water Treatment 1–11. doi:10.1080/19443994.2015.1015173.
  • Ghaedi, M., M. Danaei Ghazanfarkhani, S. Khodadoust, N. Sohrabi, and M. Oftade. 2014. Acceleration of methylene blue adsorption onto activated carbon prepared from dross licorice by ultrasonic: Equilibrium, kinetic and thermodynamic studies. Journal of Industrial and Engineering Chemistry 20:2548–60. doi:10.1016/j.jiec.2013.10.039.
  • Gunes, E., and T. Kaygusuz. 2015. Adsorption of reactive blue 222 onto an industrial solid waste included Al(III) hydroxide: PH, ionic strength, isotherms, and kinetics studies. Desalination and Water Treatment 53:2510–17. doi:10.1080/19443994.2013.867414.
  • Gupta, V. K., R. Jain, M. N. Siddiqui, T. A. Saleh, S. Agarwal, S. Malati, and D. Pathak. 2010. Equilibrium and thermodynamic studies on the adsorption of the dye rhodamine-B onto mustard cake and activated carbon. Journal of Chemical and Engineering Data 55:5225–29. doi:10.1021/je1007857.
  • He, X., P. Ling, M. Yu, X. Wang, X. Zhang, and M. Zheng. 2013. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochimica Acta 105:635–41. doi:10.1016/j.electacta.2013.05.050.
  • Hengshui Coldye Chemical Co. Ltd. 2021. Retrieved 11 April, 2022, https://www.basicaciddyes.com/acidbasic/basic-blue-9.html.
  • Hussain, T. 2016. Chapter 5: Textile processing. In Textile engineering, an introduction, ed. Y. Nawab, 106–107. Berlin/Boston: Walter de Gruyter GmbH.
  • Karagoz, S., T. Tay, S. Ucar, and M. Erdem. 2008. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technology 99:6214–22. doi:10.1016/j.biortech.2007.12.019.
  • Lei, C., M. Pi, C. Jiang, B. Cheng, and J. Yu. 2017. Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. Journal of Colloid and Interface Science 490:242–51. doi:10.1016/j.jcis.2016.11.049.
  • Li, Z., L. Sheng, Z. Meng, C. Xie, and K. Zhao. 2016. A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose. Microchimica Acta 183:1625–32. doi:10.1007/s00604-016-1791-x.
  • Ozhan, A., O. Sahin, M. M. Kucuk, and C. Saka. 2014. Preparation and characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue. Cellulose 21:2457–67. doi:10.1007/s10570-014-0299-y.
  • Piol, M. N., C. Dickerman, M. P. Ardanza, A. Saralegui, and S. P. Boeykens. 2021. Simultaneous removal of chromate and phosphate using different operational combinations for their adsorption on dolomite and banana peel. Journal of Environmental Management 288 (112463):1–8. doi:10.1016/j.jenvman.2021.112463.
  • Purai, A., and V. K. Rattan. 2012. Biosorption of leather dye (Acid Blue 193) from aqueous solution using ash prepared from cow dung, mango stone, parthenium leaves and activated carbon. Indian Chemical Engineer 54:190–209. doi:10.1080/00194506.2011.696368.
  • Sencan, A., M. Karaboyacı, and M. Kilic. 2015. Determination of lead(II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2. Environmental Science and Pollution Research 22:3238–48. doi:10.1007/s11356-014-2974-9.
  • Shavisi, Y., S. Sharifnia, M. A. Khadivi, M. Baniamer, A. Shokrollahi, and M. Zendehzaban. 2014. Kinetics and isotherm studies of acid blue 193 adsorption from aqueous solutions onto perlite granules. Paper presented at the annual meeting: The 8th International Chemical Engineering Congress & Exhibition (IChEC 2014), Kish, Iran, February 24-27.
  • Silva, T. L., A. L. Cazetta, P. S. C. Souza, T. Zhang, T. Asefa, and V. C. Almeida. 2018. Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. Journal of Cleaner Production 171:482–90. doi:10.1016/j.jclepro.2017.10.034.
  • Songur, R., E. Bayraktar, and U. Mehmetoglu. 2011. Removal of a reactive dye by adsorption utilizing waste aluminium hydroxide sludge as an adsorbent. World Academy of Science, Engineering and Technology 5917:100309.
  • Sun, D., X. Zhang, Y. Wu, and X. Liu. 2010. Adsorption of anionic dyes from aqueous solution on fly ash. Journal of Hazardous Materials 181:335–42. doi:10.1016/j.jhazmat.2010.05.015.
  • Thangamani, K. S., M. Sathishkumar, Y. Sameena, N. Vennilamani, K. Kadirvelu, S. Pattabhi, and S. E. Yun. 2007. Utilization of modified silk cotton hull waste as an adsorbent for the removal of textile dye (reactive blue MR) from aqueous solution. Bioresource Technology 98:1265–69. doi:10.1016/j.biortech.2006.05.010.
  • Tunc, O., H. Tanaci, and Z. Aksu. 2009. Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. Journal of Hazardous Materials 163:187–98. doi:10.1016/j.jhazmat.2008.06.078.
  • Ucar, S., M. Erdem, T. Tay, and S. Karagoz. 2009. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Applied Surface Science 255:8890–96. doi:10.1016/j.apsusc.2009.06.080.
  • Xia, M., X. Shao, Z. Sun, and Z. Xu. 2020. Conversion of cotton textile wastes into porous carbons by chemical activation with ZnCl2, H3PO4, and FeCl3. Environmental Science and Pollution Research 27:25186–96. doi:10.1007/s11356-020-08873-3.
  • Xu, Z., S. Gu, Z. Sun, D. Zhang, Y. Zhou, Y. Gao, R. Qi, and W. Chen. 2020. Synthesis of char-based adsorbents from cotton textile waste assisted by iron salts at low pyrolysis temperature for Cr(VI) removal. Environmental Science and Pollution Research 27:11012–25. doi:10.1007/s11356-019-07588-4.
  • Yorgun, S., N. Vural, and H. Demiral. 2009. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials 122:189–94. doi:10.1016/j.micromeso.2009.02.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.