234
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Impact Performance of Three-dimensional Woven Composites with Novel Binding Yarn Patterns

ORCID Icon, , ORCID Icon &
Pages 14461-14476 | Published online: 18 Apr 2022

References

  • Abdul Khalil, H. P. S., A. H. Bhat, and A. F. Ireana Yusra. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87 (2):963–79. doi:10.1016/j.carbpol.2011.08.078.
  • Abrate, S. 1994. Impact on laminated composites: Recent advances. Applied Mechanics Reviews 47 (11):517–44. doi:10.1115/1.3111065.
  • Ahmed, U., A. Tariq, Y. Nawab, K. Shaker, Z. Khaliq, and M. Umair. 2020. Comparison of mechanical behavior of biaxial, unidirectional and standard woven fabric reinforced composites. Fibers and Polymers 21 (6):1308–15. doi:10.1007/s12221-020-9915-7.
  • Ali, A., K. Shaker, Y. Nawab, M. Ashraf, A. Basit, S. Shahid, and M. Umair. 2015. Impact of hydrophobic treatment of jute on moisture regain and mechanical properties of composite material. Journal of Reinforced Plastics and Composites 34 (24):2059–68. doi:10.1177/0731684415610007.
  • Ashraf, W., Y. Nawab, M. Umair, K. Shaker, and M. Karahan. 2017. Investigation of mechanical behavior of woven/knitted hybrid composites. Journal of the Textile Institute 108 (9):1510–17. doi:10.1080/00405000.2016.1258951.
  • Bahei-El-Din, Y. A., and M. A. Zikry. 2003. Impact-induced deformation fields in 2D and 3D Woven Composites. Composites Science and Technology 63 (7):923–42. doi:10.1016/S0266-3538(03)00021-6.
  • Baucom, J. N., and M. A. Zikry. 2003. Evolution of failure mechanisms in 2D and 3D woven composite systems under quasi-static perforation. Journal of Composite Materials 37 (18):1651–74. doi:10.1177/002199803035178.
  • Baucom, J. N., and M. A. Zikry. 2005a. Low-velocity impact damage progression in woven E-Glass composite systems. Composites. Part A, Applied Science and Manufacturing 36 (5):658–64. doi:10.1016/j.compositesa.2004.07.008.
  • Baucom, J. N., and M. A. Zikry. 2005b. Low-Velocity Impact Damage Progression in Woven Eglass Composite Systems. Composites. Part A, Applied Science and Manufacturing 36 (5):658–64. doi:10.1016/j.compositesa.2004.07.008.
  • Baucom, J. N., M. A. Zikry, and A. M. Rajendran. 2006. Low-velocity impact damage accumulation in woven S2-glass composite systems. Composite Science and Technology 66 (10):1229–38. doi:10.1016/j.compscitech.2005.11.005.
  • Behera, B. K., and B. P. Dash. 2013. An experimental investigation into structure and properties of 3D-Woven Aramid and PBO fabrics. The Journal of the Textile Institute 104 (12):1337–44. doi:10.1080/00405000.2013.805873.
  • Bogdanovich, A. E., M. Karahan, S. V. Lomov, and I. Verpoest. 2013. Quasi-static tensile behavior and damage of carbon/epoxy composite reinforced with 3D non-crimp orthogonal woven fabric. Mechanics of Materials 62:14–31. doi:10.1016/j.mechmat.2013.03.005.
  • Boussu, F., I. Cristian, and S. Nauman. 2015. general definition of 3D warp interlock fabric architecture. Composites Part B: Engineering 81:171–88. doi:10.1016/j.compositesb.2015.07.013.
  • Boussu, F., M. Lefebvre, D. Coutellier, and D. Vallee. 2014. Experimental and high velocity impact studies on hybrid armor using metallic and 3D textile composites. CAMX-The Composites and Advanced Materials Expo (pp. 13–16).
  • Curtis, P. T., J. Gates, and C. G. Molyneux. 1993. Impact damage growth in carbon fibre composites.
  • Dai, S., P. R. Cunningham, S. Marshall, and C. Silva. 2015. Open hole quasi-static and fatigue characterisation of 3D Woven Composites. Composite Structures 131:765–74. doi:10.1016/j.compstruct.2015.06.032.
  • De Freitas, M., and L. Reis. 1998. Failure mechanisms on composite specimens subjected to compression after impact. Composite Structures 42 (4):365–73. doi:10.1016/S0263-8223(98)00081-6.
  • Gao, T., Y. Zhao, G. Zhou, Y. Han, Y. Zheng, Z. Shan, D. Hui, X. Fujun, and Y. Qiu. 2015. Fabrication and characterization of three dimensional woven carbon fiber/silica ceramic matrix composites. composites part b: engineering 77:122–28. doi:10.1016/j.compositesb.2015.02.024.
  • Gerlach, R., C. R. Siviour, J. Wiegand, and N. Petrinic. 2012. In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading. Composites Science and Technology 72 (3):397–411. doi:10.1016/j.compscitech.2011.11.032.
  • Gu, H., and Z. Zhili. 2002. Tensile behavior of 3D woven composites by using different fabric structures. Materials & Design 23 (7):671–74. doi:10.1016/S0261-3069(02)00053-5.
  • Guynn, E. G., and T. K. O’Brien. 1985. The influence of lay-up and thickness on composite impact damage and compression strength. In The influence of lay-up and thickness on composite impact damage and compression strength.” Proc 26th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conf, ed. E. G. Guynn and T. K. O’Brien, 187–96, Orlando.
  • Hallal, A., R. Younes, F. Fardoun, and S. Nehme. 2011a. Improved analytical model to predict the effective elastic properties of 2.5d interlock woven fabrics composite. Composite Structures 94 (10):3009–28. doi:10.1016/j.compstruct.2012.03.019.
  • Hallal, A., R. Younes, S. Nehme, and F. Fardoun. 2011b. A Corrective Function for the Estimation of the Longitudinal Young’s Modulus in a Developed Analytical Model for 2.5D Woven Composites. Journal of Composite Materials 45 (17):1793–804. doi:10.1177/0021998310387671.
  • Herb, V., E. Martin, and G. Couégnat. 2012. Damage analysis of Thin 3D-Woven SiC/SiC composite under low velocity impact loading. Composites. Part A, Applied Science and Manufacturing 43 (2):247–53. doi:10.1016/j.compositesa.2011.10.013.
  • Hitchen, S. A., R. M. Kemp, H. S.a, and R. M. Kemp. 1994. The Effect of Stacking Sequence and Layer Thickness on the Compressive Behaviour of Carbon Composite Materials: Impact Damage and Compression after Impact. Defence Research Agency Farnborough.
  • Ibekwe, S. I., P. F. Mensah, L. Guoqiang, S.-S. Pang, and M. A. Stubblefield. 2007. Impact and Post Impact Response of Laminated Beams at Low Temperatures. Composite Structures 79 (1):12–17. doi:10.1016/j.compstruct.2005.11.025.
  • Jabbar, M., K. Shaker, Y. Nawab, and M. Umair. 2021. Effect of the Stuffer Yarns on the Mechanical Performance of Novel 3D Woven Green Composites. Composite Structures 269:114023. doi:10.1016/j.compstruct.2021.114023.
  • Jekabsons, J., and J. Varna. 2001. Micromechanics of Damage Accumulation in a 2.5D Woven C-Fibber/SiC Ceramic Composite. Mechanics of composite materials 37 (4):289–98.
  • Karahan, M., S. V. Lomov, A. E. Bogdanovich, and I. Verpoest. 2011. Fatigue Tensile Behavior of Carbon/Epoxy Composite Reinforced with Non-Crimp 3D Orthogonal Woven Fabric. Composites Science and Technology 71 (16):1961–72. doi:10.1016/j.compscitech.2011.09.015.
  • Kashif, M., S. Talha Ali Hamdani, Y. Nawab, M. Ayub Asghar, M. Umair, and K. Shaker. 2019. Optimization of 3D Woven Preform for Improved Mechanical Performance. Journal of Industrial Textiles 48 (7):1206–27. doi:10.1177/1528083718760802.
  • King, R. S., G. Stewart, A. T. McIlhagger, and J. P. Quinn. 2009. The Influence of Through-The-Thickness Binder Yarn Count on Fibre Volume Fraction, Crimp and Damage Tolerance Within 3D Woven Carbon Fibre Composites. Polymers & Polymer Composites 17 (5):303–12. doi:10.1177/096739110901700504.
  • Liu, Y., J. Zhu, Z. Chen, Y. Jiang, L. Chengdong, L. Binbin, L. Lin, T. Guan, and Z. Chen. 2012. Mechanical Properties and Microstructure of 2.5D (Shallow Straight-Joint) Quartz Fibers-Reinforced Silica Composites by Silicasol-Infiltration-Sintering. Ceramics International 38 (1):795–800. doi:10.1016/j.ceramint.2011.08.006.
  • Midani, M., A. Fattah Seyam, M. Nasr Saleh, and M. Pankow. 2019. The Effect of the Through-Thickness Yarn Component on the in- and out-of-Plane Properties of Composites from 3D Orthogonal Woven Preforms. Journal of the Textile Institute 110 (3):317–27. doi:10.1080/00405000.2018.1481722.
  • Midani, M., A. Fattah Seyam, and M. Pankow. 2018. The Effect of the Structural Parameters of 3d Orthogonal Woven Composites on Their Impact Responses under Different Modes of Impact. Key Engineering Materials 786:215–23. 10.4028/www.scientific.net/KEM.786.215.
  • Midani, M., A. F. M. Seyam, A. Sousa Monteiro, and J. Baruque-Ramos. 2020. Effect of Structural Parameters on the Impact Properties of Multilayer Composites from Tururi Palm (Manicaria Saccifera Gaertn.) Fibrous Material. Journal of Natural Fibers 17 (2):284–97. doi:10.1080/15440478.2018.1491369.
  • Nauman, S., and I. Cristian. 2015. Geometrical Modelling of Orthogonal/Layer-to-Layer Woven Interlock Carbon Reinforcement. The Journal of the Textile Institute 106 (7):725–35. doi:10.1080/00405000.2014.937560.
  • Nawab, Y., M. Kashif, M. Ayub Asghar, A. Asghar, M. Umair, K. Shaker, and M. Zeeshan. 2018. Development & Characterization of Green Composites Using Novel 3D Woven Preforms. Applied Composite Materials 25 (4):747–59. doi:10.1007/s10443-018-9720-2.
  • Pankow, M., B. Justusson, A. Salvi, A. Waas, C. Fong Yen, and S. Ghiorse. 2011. Shock Response of 3D Woven Composites: An Experimental Investigation. Composite Structures 93 (5):1337–46. doi:10.1016/j.compstruct.2010.10.021.
  • Potluri, P., P. Hogg, M. Arshad, D. Jetavat, and P. Jamshidi. 2012. Influence of Fibre Architecture on Impact Damage Tolerance in 3D Woven Composites. Applied Composite Materials 19 (5):799–812. doi:10.1007/s10443-012-9256-9.
  • Rajesh, M., B. K. B. Vijay Baheti, J. Militky, and J. Militky. 2014. Novelties of 3-D Woven Composites and Nanocomposites. The Journal of the Textile Institute 105 (1):84–92. doi:10.1080/00405000.2013.812266.
  • Rwawiire, S., B. Tomkova, J. Militky, A. Jabbar, and B. Madhukar Kale. 2015. Development of a Biocomposite Based on Green Epoxy Polymer and Natural Cellulose Fabric (Bark Cloth) for Automotive Instrument Panel Applications. Composites Part B: Engineering 81:149–57. doi:10.1016/j.compositesb.2015.06.021.
  • Saleh, M. N., A. Yudhanto, P. Potluri, G. Lubineau, and C. Soutis. 2016. Characterising the Loading Direction Sensitivity of 3D Woven Composites: Effect of z-Binder Architecture. Composites. Part A, Applied Science and Manufacturing 90:577–88. doi:10.1016/j.compositesa.2016.08.028.
  • Sarasini, F., J. Tirillò, L. Ferrante, M. Valente, T. Valente, L. Lampani, P. Gaudenzi, S. Cioffi, S. Iannace, and L. Sorrentino. 2014. Drop-Weight Impact Behaviour of Woven Hybrid Basalt-Carbon/Epoxy Composites. Composites Part B: Engineering 59:204–20. doi:10.1016/j.compositesb.2013.12.006.
  • Schubel, P. M., J.-J. Luo, and I. M. Daniel. 2007. Impact and Post Impact Behavior of Composite Sandwich Panels. Composites. Part A, Applied Science and Manufacturing 38 (3):1051–57. doi:10.1016/j.compositesa.2006.06.022.
  • Seltzer, R., C. González, R. Muñoz, J. Llorca, and T. Blanco-Varela. 2013. X-Ray microtomography analysis of the damage micromechanisms in 3D woven composites under low-velocity impact. Composites. Part A, Applied Science and Manufacturing 45:49–60. doi:10.1016/j.compositesa.2012.09.017.
  • Shigang, A., F. Daining, H. Rujie, and P. Yongmao. 2015. Effect of manufacturing defects on mechanical properties and failure features of 3D orthogonal woven C/C composites. Composites Part B: Engineering 71:113–21. doi:10.1016/j.compositesb.2014.11.003.
  • Soutis, C., and P. T. Curtis. 1996. Prediction of the post-impact compressive strength of CFRP laminated composites. Composites Science and Technology 56 (6):677–84. doi:10.1016/0266-3538(96)00050-4.
  • Stig, F., and S. Hallström. 2013. Influence of crimp on 3D-woven fibre reinforced composites. Composite Structures 95:114–22. doi:10.1016/j.compstruct.2012.07.022.
  • Sun, D., and X. Chen. 2015. Three-dimensional textiles for protective clothing. In Advances in 3D textiles (pp. 341–360). Elsevier.
  • Tang, Y., B. Sun, and G. Bohong. 2011. Impact damage of 3D cellular woven composite from unit-cell level analysis. International Journal of Damage Mechanics 20 (3):323–46. doi:10.1177/1056789509351843.
  • Turner, P., T. Liu, and X. Zeng. 2015. Dynamic response of orthogonal three-dimensional woven carbon composite beams under soft impact. Journal of Applied Mechanics 82 (12):121008. doi:10.1115/1.4031455.
  • Umair, M. 2017. Specialty Fabric Structures. In Y. Nawab, S. T. A. Hamdani, and K. Shaker (Eds.). Structural Textile Design: interlacing and interlooping (pp. 85–122). CRC Press.
  • Umair, M., Y. Nawab, M. Hasan Malik, and K. Shaker. 2015. Development and characterization of three-dimensional woven-shaped preforms and their associated composites. Journal of Reinforced Plastics and Composites 34 (24):2018–28. doi:10.1177/0731684415608958.
  • Umair, M., S. Talha Ali Hamdani, M. Hussain, and Y. Nawab. 2021. Mechanical performance of 3D woven jute/green epoxy composites with novel weaving patterns. Journal of Industrial Textiles 152808372094802. doi:10.1177/1528083720948025.
  • Wambua, P. M., and R. Anandjiwala. 2010. A Review of Preforms for the Composites Industry. Journal of the Textile Institute 40 (10):310–33. doi:10.1177/1528083709092014.
  • Wan, Y. Z., G. Zak, S. Naumann, S. Redekop, I. Slywynska, and Y. Jiang. 2007. Study of 2.5-D glass-fabric-reinforced light-curable resin composites for orthotic applications. Composites Science and Technology 67 (13):2739–46. doi:10.1016/j.compscitech.2007.02.010.
  • Wyrick, D. A., and D. F. Adams. 1988. Residual strength of a carbon/epoxy composite material subjected to repeated impact. Journal of Composite Materials 22 (8):749–65. doi:10.1177/002199838802200804.
  • Xin, D., and Y. H. Lei. 2005. Representation of 3D woven structures by parametric method. Journal of Donghua University 22 (1):22–25.
  • Yi, H. L., and X. Ding. 2004. Conventional approach on manufacturing 3D woven preforms used for composites. Journal of Industrial Textiles 34 (1):39–50. doi:10.1177/1528083704045847.
  • Yu, B., R. Blanc, C. Soutis, and P. J. Withers. 2016. Evolution of damage during the fatigue of 3d woven glass-fibre reinforced composites subjected to tension-tension loading observed by time-Lapse X-Ray tomography. Composites. Part A, Applied Science and Manufacturing 82:279–90. doi:10.1016/j.compositesa.2015.09.001.
  • Zhang, X., G. A. O. Davies, and D. Hitchings. 1999. Impact damage with compressive preload and post-impact compression of carbon composite plates. International Journal of Material FormingInternational Journal of Impact Engineering 22 (5):485–509. doi:10.1016/S0734-743X(99)00003-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.