70
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Residues from Cajanus cajan Plant Provide Natural Cellulose Fibers Similar to Flax

, , , , & ORCID Icon
Pages 14539-14547 | Published online: 02 May 2022

References

  • Bilal, M., M. Asgher, H. M. N. Iqbal, H. Hu, and X. Zhang. 2017. Biotransformation of lignocellulosic materials into value-added products—a review. International Journal of Biological Macromolecules 98:447–58. doi:10.1016/j.ijbiomac.2017.01.133.
  • Cai, D., P. Li, C. Chen, Y. Wang, S. Hu, C. Cui, P. Qin, and T. Tan. 2016. Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system. Bioresource Technology 220:68–75. doi:10.1016/j.biortech.2016.08.049.
  • Chaker, A., S. Alila, P. Mutjé, M. R. Vilar, and S. Boufi. 2013. Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20 (6):2863–75. doi:10.1007/s10570-013-0036-y.
  • Gholampour, A., and T. Ozbakkaloglu. 2020. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science 55 (3):829–92. doi:10.1007/s10853-019-03990-y.
  • Guna, V., M. Ilangovan, K. Adithya, A. Koushik, C. V. Srinivas, S. Yogesh, G. S. Nagananda, K. Venkatesh, and N. Reddy. 2019. Biofibers and biocomposites from sabai grass: A unique renewable resource. Carbohydrate Polymers 218:243–49. doi:10.1016/j.carbpol.2019.04.085.
  • Guna, V., M. Ilangovan, C. Hu, G. S. Nagananda, M. G. Ananthaprasad, K. Venkatesh, and N. Reddy. 2021. Antimicrobial natural cellulose fibers from Hyptis suaveolens for potential biomedical and textiles applications. Journal of Natural Fibers 18 (6):867–76. doi:10.1080/15440478.2019.1658258.
  • Ilangovan, M., V. Guna, C. Hu, G. S. Nagananda, and N. Reddy. 2018. Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Industrial Crops and Products 112:556–60. doi:10.1016/j.indcrop.2017.12.042.
  • Ilangovan, M., V. Guna, B. Prajwal, Q. Jiang, and N. Reddy. 2020. Extraction and characterisation of natural cellulose fibers from Kigelia Africana. Carbohydrate Polymers 236:115996. doi:10.1016/j.carbpol.2020.115996.
  • Kulandaivel, N., R. Muralikannan, and K. S. Sundaram. 2020. Extraction and Characterization of Novel Natural Cellulosic Fibers from Pigeon Pea Plant. Journal of Natural Fibers 17 (5):769–79. doi:10.1080/15440478.2018.1534184.
  • Li, X., G. Du, S. Wang, and G. Yu. 2014. Physical and mechanical characterization of fiber cell wall in castor (Ricinus communis L.) stalk. BioResources 9 (1):1596–605. doi:10.15376/biores.9.1.1596-1605.
  • Luthra, P., R. Singh, and G. S. Kapur. 2019. Preparation and studies of pigeon pea stalk/polypropylene composites with and without compatibilizer. Polymers and Polymer Composites 27 (6):337–46. doi:10.1177/0967391119847849.
  • Paul, R., A. Surribas, M. Brouta, M. Alaman, and H. Esteve. 2009. Hemp: An ecologic textile alternative. Revista Química Textil 195 (6):30–34.
  • Reddy, N., and Y. Yang. 2005. Properties and potential applications of natural cellulose fibers from cornhusks. Green Chemistry 7 (4):190–95. doi:10.1039/B415102J.
  • Reddy, N., and Y. Yang. 2007. Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen. Biotechnology and Bioengineering 97 (5):1021–27. doi:10.1002/bit.21330.
  • Reddy, N., and Y. Yang. 2009a. Natural cellulose fibers from soybean straw. Bioresource Technology 100 (14):3593–98. doi:10.1016/j.biortech.2008.09.063.
  • Reddy, N., and Y. Yang. 2009b. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technology 100 (14):3563–69. doi:10.1016/j.biortech.2009.02.047.
  • Reddy, N., and Y. Yang. 2009c. Properties of natural cellulose fibers from hop stems. Carbohydrate Polymers 77 (4):898–902. doi:10.1016/j.carbpol.2009.03.013.
  • Samanta, A. K., N. Jayapal, A. P. Kolte, S. Senani, M. Sridhar, S. Mishra, C. S. Prasad, and K. P. Suresh. 2013. Application of pigeon pea (Cajanus cajan) stalks as raw material for xylooligosaccharides production. Applied Biochemistry and Biotechnology 169 (8):2392–404. doi:10.1007/s12010-013-0151-0.
  • Shyam Kumar, R., P. Balasundar, N. A. Al-Dhabi, R. Prithivirajan, T. Ramkumar, K. S. Bhat, S. Senthil, and P. Narayanasamy. 2021. A new natural cellulosic pigeon pea (Cajanus cajan) pod fiber characterization for bio-degradable polymeric composites. Journal of Natural Fibers 18:1285–95. doi:10.1080/15440478.2019.1689887.
  • Solle, M. A., J. Arroyo, M. H. Burgess, S. Warnat, and C. A. Ryan. 2019. Value-added composite bioproducts reinforced with regionally significant agricultural residues. Composites Part A: Applied Science and Manufacturing 124:105441. doi:10.1016/j.compositesa.2019.05.009.
  • Vinayaka, D. L., V. Guna, D. Madhavi, M. Arpitha, and N. Reddy. 2017. Ricinus communis plant residues as a source for natural cellulose fibers potentially exploitable in polymer composites. Industrial Crops and Products 100:126–31. doi:10.1016/j.indcrop.2017.02.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.