281
Views
9
CrossRef citations to date
0
Altmetric
Report

Bio-composite film from corn starch based vetiver cellulose

, ORCID Icon, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 14634-14644 | Published online: 03 May 2022

References

  • Abe, K., S. Iwamoto, and H. Yano. 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8 (10):3276–78. doi:10.1021/bm700624p.
  • Baksi, S., S. Saha, C. Birgen, U. Sarkar, H.-A. Preisig, S. Markussen, B. Wittgens, and A. Wentzel. 2019. Valorization of lignocellulosic waste (crotalaria juncea) using alkaline peroxide pretreatment under different process conditions: an optimization study on separation of lignin, cellulose, and hemicellulose. Journal of Natural Fibers 16 (5):662–76. doi:10.1080/15440478.2018.1431998.
  • Bharath, K. N., P. Madhu, T. Y. Gowda, A. Verma, M. R. Sanjay, and S. Siengchin. 2021. Mechanical and chemical properties evaluation of sheep wool fiber–reinforced vinylester and polyester composites. Materials Performance and Characterization 10:99–109. doi:10.1520/MPC20200036.
  • Brydson, J.-A. 1981. “Flow properties of polymer melts.” New York: J. Wiley.
  • Chandra, R., and R. Rustgi. 1998. Biodegradable polymers. Progress in Polymer Science 23:1273–335. doi:10.1016/S0079-6700(97)00039-7.
  • Cogswell, F.-N. 2004. Polymer Melts Rheology. Journal of Polymer Science: Polymer Letters Edition 20.
  • Deepa, B., -S.-S. Pillai, L.-A. Pothan, and S. Thomas. 2013. Mechanical properties of cellulose‐based bionanocomposites. Biopolymer Nanocomposites: Processing, Properties, and Applications 437–60.
  • DeLeo, C.-L., and -S.-S. Velankar. 2008. Morphology and rheology of compatibilized polymer blends: Diblock compatibilizers vs crosslinked reactive compatibilizers. Journal of Rheology 52:1385–404. doi:10.1122/1.2995857.
  • Dogra, V., C. Kishore, A. Verma, A. K. Rana, and A. Gaur. 2021. Fabrication and experimental testing of hybrid composite material having biodegradable bagasse fiber in a modified epoxy resin: evaluation of mechanical and morphological behavior. Applied Science and Engineering Progress 14:661–67.
  • Gisan, K.-A., M.-Y. Chan, and S.-C. Koay. 2020. Solvent-cast biofilm from poly (lactic) acid and durian husk fiber: tensile, water absorption, and biodegradation behaviors. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.1857894.
  • Jain, N., A. Verma, and V. K. Singh. 2019. Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Materials Research Express 6:105373. doi:10.1088/2053-1591/ab4332.
  • Ke, T., S.-X. Sun, and P. Seib. 2003. Blending of poly (lactic acid) and starches containing varying amylose content. Journal of Applied Polymer Science 89:3639–46. doi:10.1002/app.12617.
  • Kim, M., and S.-J. Lee. 2002. Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Carbohydrate Polymers 50:331–37. doi:10.1016/S0144-8617(02)00057-7.
  • Lisdayana, N., F. Fahma, T.-C. Sunarti, and E.-S. Iriani. 2020. Thermoplastic starch–PVA nanocomposite films reinforced with nanocellulose from oil palm empty fruit bunches (OPEFBs): effect of starch type. Journal of Natural Fibers 17:1069–80. doi:10.1080/15440478.2018.1558142.
  • Marichelvam, M. K., P. Manimaran, A. Verma, M. R. Sanjay, S. Siengchin, K. Kandakodeeswaran, and M. Geetha. 2021. A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: An experimental approach. Polymer Composites 42:512–21. doi:10.1002/pc.25843.
  • Melkamu, A., M.-B. Kahsay, and A.-G. Tesfay. 2019. Mechanical and water-absorption properties of sisal fiber (Agave sisalana)-reinforced polyester composite. Journal of Natural Fibers 16:877–85. doi:10.1080/15440478.2018.1441088.
  • Mousavi, S.-M., O. Arjmand, M.-R. Talaghat, M. Azizi, and H. Shooli. 2015. Modifying the properties of polypropylene-wood composite by natural polymers and eggshell nano-particles. Polymers from Renewable Resources 6:157–73. doi:10.1177/204124791500600403.
  • Najafi, S.-K., E. Hamidinia, and M. Tajvidi. 2006. Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science 100:3641–45. doi:10.1002/app.23159.
  • Nassar, M. M., K. I. Alzebdeh, T. Pervez, N. Al-Hinai, A. Munam, F. Al-Jahwari, and I. Sider. 2021. Polymer powder and pellets comparative performances as bio-based composites. Iranian Polymer Journal 30:269–83. doi:10.1007/s13726-020-00888-4.
  • Nor, -W.-Z.-W., N.-A.-A. Rahim, H. Osman, and M. Ibrahim. 2014. Mechanical properties of starch filled polypropylene under exposure of hygrothermal conditions. Malaysian Journal of Analytical Sciences 18:434–43.
  • Potts, J., R. Clendinning, W. Ackart, and W. Niegisch. 1973. The biodegradability of synthetic polymers, 61–79. Singapore: Springer US.
  • Rastogi, S., A. Verma, and V.-K. Singh. 2020. Experimental Response of Nonwoven Waste Cellulose Fabric–Reinforced Epoxy Composites for High Toughness and Coating Applications. Materials Performance and Characterization 9:151–72. doi:10.1520/MPC20190251.
  • Sabetzadeh, M., R. Bagheri, and M. Masoomi. 2012. Effect of corn starch content in thermoplastic starch/low‐density polyethylene blends on their mechanical and flow properties. Journal of Applied Polymer Science 126:E63–E69. doi:10.1002/app.36329.
  • Saw, S.-K., K. Akhtar, N. Yadav, and A.-K. Singh. 2014. Hybrid composites made from jute/coir fibers: water absorption, thickness swelling, density, morphology, and mechanical properties. Journal of Natural Fibers 11:39–53. doi:10.1080/15440478.2013.825067.
  • Sekar, S., S. Suresh Kumar, S. Vigneshwaran, and G. Velmurugan. 2020. Evaluation of mechanical and water absorption behavior of natural fiber-reinforced hybrid biocomposites. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1788487.
  • Surin, P., P. Rakkwamsuk, E. Wimolmala, and N. Sombatsompop. 2015. Effects of coir fiber and maleic anhydride modification on the properties of thermoplastic starch/PLA composite laminates. Journal of Natural Fibers 12:108–20. doi:10.1080/15440478.2014.901203.
  • Verma, A., K. Baurai, M. R. Sanjay, and S. Siengchin. 2020. Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polymer Composites 41:338–49. doi:10.1002/pc.25373.
  • Viswanath, V. 2010. Degradation studies of polypropylene fibers and nonwovens with prodegradant additives. United states: North Carolina State University.
  • Wise, L. E., M. Murphy, and A. A. Daddieco. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Technical Association Papers 29:210–18.
  • Zeeman, S. C., S. M. Smith, and A. M. Smith. 2004. The breakdown of starch in leaves. New Phytologist 163:247–61. doi:10.1111/j.1469-8137.2004.01101.x.
  • Zhang, S., W. Wang, H. Wang, W. Qi, L. Yue, and Q. Ye. 2014. Synthesis and characterisation of starch grafted superabsorbent via 10 MeV electron-beam irradiation. Carbohydrate Polymers 101:798–803. doi:10.1016/j.carbpol.2013.10.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.