136
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of p-phenylenediamine treated fibrillated cellulose fiber and its application in poly(vinyl alcohol) composites

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 14694-14705 | Published online: 03 May 2022

References

  • Abraham, E., B. Deepa, L. A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, and R. Anandjiwala. 2011. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers 86 (4):1468–75. doi:10.1016/j.carbpol.2011.06.034.
  • Alemdar, A., and M. Sain. 2008. Isolation and characterization of nanofibers from agricultural residues - wheat straw and soy hulls. Bioresource Technology 99 (6):1664–71. doi:10.1016/j.biortech.2007.04.029.
  • Behera, A. K., S. Avancha, R. Kumar Basak, R. Sen, and B. Adhikari. 2012. Fabrication and characterizations of biodegradable jute reinforced soy based green composites. Carbohydrate Polymers Elsevier Ltd. 88 (1):329–35. doi:10.1016/j.carbpol.2011.12.023.
  • da Silva, I. Leão Amaral, A. Barreto Bevitori, L. Araujo Rohen, F. Muylaert Margem, F. de Oliveira Braga, and S. Neves Monteiro. 2016. Characterization by Fourier Transform Infrared (FTIR) analysis for natural jute fiber. Materials Science Forum 869:283–87. doi:10.4028/scientific.net/MSF.869.283.
  • Fei, H., N. Lin, P. R. Chang, and J. Huang. 2015, May. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. ( Elsevier Ltd: 208–215) Carbohydrate Polymers 129:208–15. doi:10.1016/j.carbpol.2015.04.061.
  • French, A. D. 2014. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21 (2):885–96. doi:10.1007/s10570-013-0030-4.
  • Gani, A., and I. Naruse. 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy Pergamon. 32 (4):649–61. doi:10.1016/j.renene.2006.02.017.
  • Huda, S., and Y. Yang. 2008. Chemically extracted cornhusk fibers as reinforcement in light-weight poly(propylene) composites. Macromolecular Materials and Engineering 293 (3):235–43. doi:10.1002/mame.200700317.
  • Ivanovska, A., D. Cerovic, N. Tadic, I. Jankovic Castvan, K. Asanovic, and M. Kostic, 2019. July. Sorption and dielectric properties of jute woven fabrics: Effect of chemical composition. Industrial Crops and Products 140:111632. doi: 10.1016/j.indcrop.2019.111632.
  • Jain, N., V. Kumar Singh, and S. Chauhan. 2017. A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. Journal of the Mechanical Behavior of Materials 26 (5–6):213–22. doi:10.1515/jmbm-2017-0027.
  • Jiang, F., and Y. Lo Hsieh. 2013. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers Elsevier Ltd. 95 (1):32–40. doi:10.1016/j.carbpol.2013.02.022.
  • Khan, G. M. A., M. S. Alam Shams, R. Kabir, M. A. Gafur, M. Terano, and M. S. Alam. 2013. Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. Journal of Applied Polymer Science 128:1020–29. doi:10.1002/app.38197.
  • Khan, G. M. A., N. D. Yilmaz, and K. Yilmaz. 2020. Effects of chemical treatments and degumming methods on physical and mechanical properties of okra bast and corn husk fibers. Journal of the Textile Institute 111 (10):1418–35. doi:10.1080/00405000.2019.1702492.
  • Kim, H. S., S. Kim, H. Joong Kim, and H. Seung Yang. 2006. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta 451 (1–2):181–88. doi:10.1016/j.tca.2006.09.013.
  • Laxmeshwar, S. S., D. J. Madhu Kumar, S. Viveka, and G. K. Nagaraja. 2012. Preparation and properties of biodegradable film composites using modified cellulose fibre-reinforced with PVA. ISRN Polymer Science 2012:1–8. doi:10.5402/2012/154314.
  • Ling, Z., X. Zhang, G. Yang, K. Takabe, and X. Feng. 2018, January. Nanocrystals of cellulose allomorphs have different adsorption of cellulase and subsequent degradation. ( Elsevier) Industrial Crops and Products 112:541–49. doi:10.1016/j.indcrop.2017.12.052.
  • Liu, S., Y. Chen, C. Liu, L. Gan, M. Xiaozhou, and J. Huang. 2019. Polydopamine-Coated cellulose nanocrystals as an active ingredient in poly(vinyl alcohol) films towards intensifying packaging application potential. Cellulose Springer Netherlands. 26 (18):9599–612. doi:10.1007/s10570-019-02749-7.
  • Liu, P., C. Mai, and K. Zhang. 2017. Formation of uniform multi-stimuli-responsive and multiblock hydrogels from dialdehyde cellulose. ACS Sustainable Chemistry & Engineering 5 (6):5313–19. doi:10.1021/acssuschemeng.7b00646.
  • López-De-Dicastillo, C., J. Gómez-Estaca, R. Catalá, R. Gavara, and P. Hernández-Muñoz. 2012. Active antioxidant packaging films: development and effect on lipid stability of brined sardines. Food Chemistry 131 (4):1376–84. doi:10.1016/j.foodchem.2011.10.002.
  • Lorenz, O., and C. R. Parks. 1961. Antioxidant efficiency of p-phenylenediamines in natural rubber vulcanizates. Rubber Chemistry and Technology 34 (3):816–33. doi:10.5254/1.3540252.
  • McKeen, L. W. 2017. Markets and Applications for Films, Containers, and Membranes. In Plastics Design Library,Permeability Properties of Plastics and Elastomers, eds. Laurence W. McKeen, 4th ed. 61–82. William Andrew Publishing. doi:10.1016/B978-0-323-50859-9.00004-X.
  • Mondal, M. I. H. and G. M. A. Khan. 2008. Effect of acrylic monomers grafting onto jute constituents with potassium persulfate initiator catalysed by Fe(II). Cellulose Chemistry and Technology 42 (1–3):9–16.
  • Mondal, M. I. H. , and M.M. Haque. 2007. Effect of grafting methacrylate monomers onto jute constituents with a potassium persulfate initiator catalyzed by Fe(II). Journal of Applied Polymer Science 103 (4):2369–75. doi:10.1002/app.25276.
  • Morais, J. P. S., M. De Freitas Rosa, M. De Sá Moreira De Souza Filho, L. Dias Nascimento, D. Magalhães Do Nascimento, and A. Ribeiro Cassales. 2013. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers Elsevier Ltd. 91 (1):229–35. doi:10.1016/j.carbpol.2012.08.010.
  • Qiu, K., and A. N. Netravali. 2012. Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Composites Science and Technology 72 (13):1588–94. doi:10.1016/j.compscitech.2012.06.010.
  • Salim, M., J. A. Rafidah, and M. Sani Sarjadi. 2021. Chemical functional groups of extractives, cellulose and lignin extracted from native leucaena leucocephala bark. Wood Science and Technology Springer Berlin Heidelberg. 55 (2):295–313. doi:10.1007/s00226-020-01258-2.
  • Santi, R., A. Cigada, B. Del Curto, and S. Farè. 2019. Modulable properties of PVA/cellulose fiber composites. Journal of Applied Biomaterials & Functional Materials 17 (1):1–7. doi:10.1177/2280800019831224.
  • Schwanninger, M., J. C. Rodrigues, H. Pereira, and B. Hinterstoisser. 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy 36 (1):23–40. doi:10.1016/j.vibspec.2004.02.003.
  • Sheng, X., M. Jiang, L. Qiuhao, S. Gao, J. Feng, X. Wang, H. Xun, K. Chen, L. Yan, and P. Ouyang. 2020. Properties of polyvinyl alcohol films composited with hemicellulose and nanocellulose extracted from artemisia selengensis straw. Frontiers in Bioengineering and Biotechnology 8 (August):1–11. doi:10.3389/fbioe.2020.00001.
  • Sultana, T., S. Sultana, H. Parvin Nur, and M. Wahab Khan. 2020. Studies on mechanical, thermal and morphological properties of betel nut husk nano cellulose reinforced biodegradable polymer composites. Journal of Composites Science 4 (3). doi:10.3390/jcs4030083.
  • Tanpichai, S., and K. Oksman. 2018. Crosslinked poly(vinyl alcohol) composite films with cellulose nanocrystals: Mechanical and thermal properties. Journal of Applied Polymer Science 135 (3):1–11. doi:10.1002/app.45710.
  • Tiller, J., P. Berlin, and D. Klemm. 1999. Soluble and film-forming cellulose derivatives with redox-chromogenic and enzyme immobilizing 1,4-phenylenediamine groups. Macromolecular Chemistry and Physics 200 (1):1–9. doi:10.1002/(SICI)1521-3935(19990101)200:1<1::AID-MACP1>3.0.CO;2-J.
  • Zhang, S., B. Liu, H. Daiyan, S. Zhang, Y. Pei, and Z. Gong. 2020. Sensitive and visual detection of p-phenylenediamine by using dialdehyde cellulose membrane as a solid matrix. Analytica Chimica Acta 1139 1139:189–97. Elsevier Ltd. doi:10.1016/j.aca.2020.09.047.
  • Zimmermann, T., E. Pöhler, and T. Geiger. 2004. Cellulose fibrils for polymer reinforcement. Advanced Engineering Materials 6 (9):754–61. doi:10.1002/adem.200400097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.