159
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Tensile Behavior and Statistical Analysis of Washingtonia Filifera Fibers as Potential Reinforcement for Industrial Polymer Biocomposites

, ORCID Icon, &
Pages 14839-14854 | Published online: 05 May 2022

References

  • Andersons, J., E. Sparniņš, and E. Poriķe. 2009. Strength and damage of elementary flax fibers extracted from tow and long line flax. Journal of Composite Materials 43:2653–64. doi:10.1177/0021998309345035.
  • Amandeep Singh, V., H. Wayne, and J. Summerscales. 2010. Failure strain as the key design criterion for fracture of natural fibre composites. Composites Science and Technology 70 (6):995–99. doi:10.1016/j.compscitech.2010.02.018.
  • Ahmadi, M. V., M. Doostparast, and J. Ahmadi. 2013. Estimating the lifetime performance index with Weibull distribution based on progressive first-failure censoring scheme. Journal of Computational and Applied Mathematics 239 (1):93–102. doi:10.1016/j.cam.2012.09.006.
  • Amroune, S., A. Bezazi, A. Belaadi, C. Zhu, F. Scarpa, S. Rahatekar, and A. Imad. 2015. Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix Dactylifera L.). Composites Part A: Applied Science and Manufacturing 71:95–106. doi:10.1016/j.compositesa.2014.12.011.
  • Amroune, S., A. Belaadi, R. Dalmis, Y. Seki, A. Makhlouf, and H. Satha. 2020. Quantitatively investigating the effects of fiber parameters on tensile and flexural response of Flax/Epoxy biocomposites. Journal of Natural Fibers 1–16. doi:10.1080/15440478.2020.1817831.
  • Adda, B., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. Experimental investigation and optimization of delamination factors in the drilling of jute fiber–reinforced polymer biocomposites with multiple estimators. The International Journal of Advanced Manufacturing Technology 116:2885–907. doi:10.1007/s00170-021-07628-9.
  • Bezazi, A., A. Belaadi, M. Bourchak, F. Scarpa, and K. Boba. 2014. Novel extraction techniques, chemical and mechanical characterisation of agave americana L. Natural fibres. Composites Part B: Engineering 66:194–203. doi:10.1016/j.compositesb.2014.05.014.
  • Belaadi, A., A. Bezazi, M. Bourchak, F. Scarpa, and C. Zhu. 2014a. Thermochemical and statistical mechanical properties of natural sisal fibres. Composites Part B: Engineering 67:481–89. doi:10.1016/j.compositesb.2014.07.029.
  • Belaadi, A., A. Bezazi, M. Maache, and F. Scarpa. 2014b. Fatigue in sisal fiber reinforced polyester composites: hysteresis and energy dissipation. Procedia Engineering 74:325–28. doi:10.1016/j.proeng.2014.06.272.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Blanchard, J. M. F. A., A. J. Sobey, and J. I. R. Blake. 2016. Multi-scale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form. Composites Part B: Engineering 84:228–35. doi:10.1016/j.compositesb.2015.08.086.
  • Belaadi, A., M. Bourchak, and H. Aouici. 2016. Mechanical properties of vegetal yarn: statistical approach. Composites Part B: Engineering 106:139–53. doi:10.1016/j.compositesb.2016.09.033.
  • Belaadi, A., S. Amroune, and M. Bourchak. 2020. Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics. The International Journal of Advanced Manufacturing Technology 106:1753–74. doi:10.1007/s00170-019-04628-8.
  • Belaadi, A., M. Boumaaza, S. Amroune, and M. Bourchak. 2020a. Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-020-06217-6.
  • Belaadi, A., H. Laouici, and M. Bourchak. 2020b. Mechanical and drilling performance of short jute fibre-reinforced polymer biocomposites: statistical approach. The International Journal of Advanced Manufacturing Technology 106 (5):1989–2006. DOI:10.1007/s00170-019-04761-4.
  • Benzannache, N., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. Improving the mechanical performance of biocomposite plaster/ Washingtonian filifira fibres using the RSM method. Journal of Building Engineering 33:101840. doi:10.1016/j.jobe.2020.101840.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. 2021a. The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: Part II optimization comparison between ANN and RSM statistics. Journal of Natural Fibers. doi:10.1080/15440478.2021.1964129.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. 2021b. The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: optimization using RSM. Journal of Natural Fibers 18 (12):2220–40. doi:10.1080/15440478.2020.1724236.
  • Codispoti, R., D. V. Oliveira, R. S. Olivito, P. B. Lourenço, and R. Fangueiro. 2015. Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry. Composites Part B: Engineering 77:74–83. doi:10.1016/j.compositesb.2015.03.021.
  • Cherief, M., A. Belaadi, M. Bouakba, M. Bourchak, and I. Meddour. 2020. Behaviour of lignocellulosic fibre-reinforced cellular core under low-velocity impact loading: Taguchi method. The International Journal of Advanced Manufacturing Technology 108:223–33. doi:10.1007/s00170-020-05393-9.
  • Cherief, M., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. The effect of geometry on the flexural properties of cellular structures reinforced with natural fibres: statistical approach. Journal of Natural Fibers. doi:10.1080/15440478.2021.1964134.
  • Ducros, F., and P. Pamphile. 2018. Bayesian estimation of Weibull mixture in heavily censored data setting. Reliability Engineering and System Safety 180:453–62. doi:10.1016/j.ress.2018.08.008.
  • Dalmis, R., S. Köktaş, Y. Seki, and A. Ç. Kılınç. 2020. Characterization of a new natural cellulose based fiber from hierochloe odarata. Cellulose 27 (1):127–39. doi:10.1007/s10570-019-02779-1.
  • Gorjan, L., and M. Ambrožič. 2012. Bend strength of alumina ceramics: a comparison of Weibull statistics with other statistics based on very large experimental data set. Journal of the European Ceramic Society 32 (6):1221–27. doi:10.1016/j.jeurceramsoc.2011.12.010.
  • Gaagaia, D. E., M. Bouakba, and A. Layachi. 2019. Thermo-physico-chemical and statistical mechanical properties of Washingtonia filifera new lignocellulosic fiber. Engineering Solid Mechanics 7:137–50. doi:10.5267/j.esm.2019.3.002.
  • Jihan, S., A. M. Siddiquib, and M. A. S. Sweet. 1997. Fracture strength of E-glass fibre strands using acoustic emission. NDT and E International 30 (6):383–88. doi:10.1016/S0963-8695(97)00009-1.
  • Jawaid, M., L. K. Kian, H. Fouad, N. Saba, O. Y. Alothman, and M. Hashem. 2021. New cellulosic fibers from Washingtonia tree agro-wastes: structural, morphological, and thermal properties. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2021.1875374.
  • Kompella, M. K., and J. Lambros. 2002. Micromechanical characterization of cellulose fibers. Polymer Testing 21 (5):523–30. doi:10.1016/S0142-9418(01)00119-2.
  • Khiari, R., M. F. Mhenni, M. N. Belgacem, and E. Mauret. 2010. Chemical composition and pulping of date palm rachis and posidonia oceanica – A comparison with other wood and non-wood fibre sources. Bioresource Technology 101 (2):775–80. doi:10.1016/j.biortech.2009.08.079.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers 171:163–72. doi:10.1016/j.carbpol.2017.04.096.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2018. Study on characterization of furcraea foetida new natural fi ber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Makhlouf, A., A. Belaadi, S. Amroune, M. Bourchak, and H. Satha. 2020. Elaboration and characterization of flax fiber reinforced high density polyethylene biocomposite: effect of the heating rate on thermo-mechanical properties. Journal of Natural Fibers 1–14. doi:10.1080/15440478.2020.1848737
  • Park, J. M., S. T. Quang, B. S. Hwang, and K. L. DeVries. 2006. Interfacial evaluation of modified jute and hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission. Composites Science and Technology 66 (15):2686–99. doi:10.1016/j.compscitech.2006.03.014.
  • Silva, F. A., N. Chawla, and R. D. T. Filho. 2008. Tensile Behavior of High Performance Natural (Sisal) Fibers. Composites Science and Technology 68 (15–16):3438–43. doi:10.1016/j.compscitech.2008.10.001.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of Raw and Alkali Treated New Natural Cellulosic Fiber from Coccinia Grandis.L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Toasa, C., and P. Dario. 2018. Consideration of the runouts and their subsequent retests into S-N curves modelling based on a three-parameter Weibull distribution. International Journal of Fatigue 106:70–80. doi:10.1016/j.ijfatigue.2017.09.010.
  • Virk, A. S., W. Hall, and J. Summerscales. 2009a. Tensile properties of jute fibres. Materials Science and Technology 25 (10):1289–95. doi:10.1179/174328408x385818.
  • Virk, A. S., W. Hall, and J. Summerscales. 2009b. Multiple data set (MDS) weak-link scaling analysis of jute fibres. Composites Part A: Applied Science and Manufacturing 40 (11):1764–71. doi:10.1016/j.compositesa.2009.08.022.
  • Virk, A. S., W. Hall, and J. Summerscales. 2012. Modulus and strength prediction for natural fibre composites. Materials Science and Technology 28 (7):864–71. doi:10.1179/1743284712y.0000000022.
  • Wiebull, W. 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics 18:293–97. doi:10.1115/1.4010337.
  • Zafeiropoulos, N. E., and C. A. Baillie. 2007. A study of the effect of surface treatments on the tensile strength of flax fibres: Part II. Application of Weibull statistics. Composites Part A: Applied Science and Manufacturing 38 (2):629–38. doi:10.1016/j.compositesa.2006.02.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.