216
Views
2
CrossRef citations to date
0
Altmetric
Review

Extremozymes as Future Appropriate Benign Elements for Eco-friendly Wet Processing of Wool and Silk

, &
Pages 15035-15044 | Published online: 29 Apr 2022

References

  • Abou Taleb, M., K. Haggag, T. B. Mostafa, A. Abou El-Kheir, and H. El-Sayed. 2018. A novel approach in pigment printing using nano-keratin based binder. Indian Journal of Fibre & Textile Research 43:83–91.
  • Abou Taleb, M., S. Mowafi, and H. El-Sayed. 2020. Utilization of keratin or sericin-based composite in detection of free chlorine in water. Journal of Molecular Structure 1202:127379. doi:10.1016/j.molstruc.2019.127379.
  • Abou Taleb, M., S. Mowafi, C. Vineis, A. Varesano, D. O. Sanchez Ramirez, C. Tonetti, and H. El-Sayed. 2020. Effect of alkali metals and alkaline earth metals hydroxides on the structure of wool fibers. Journal of Natural Fibers 1–14. doi:10.1080/15440478.2020.1846659.
  • Allam, O. G., H. El-Sayed, A. Kantouch, and K. Haggag. 2009. Use of sericin in felt proofing of wool. Journal of Natural Fibers 6 (1):1–13. doi:10.1080/15440470802699802.
  • Allam, O., N. Elshemy, and H. El-Sayed. 2020. Simple and easily applicable method for reducing freshwater consumption in dyeing of wool fabric. Journal of Natural Fibers. doi:10.1080/15440478.2020.1764439.
  • Anish, R., M. S. Rahman, and M. Rao. 2007. Application of cellulases from an alkalothermophilicThermomonospora sp. in biopolishing of denims. Biotechnology and Bioengineering 96 (1):48–56. doi:10.1002/bit.21175.
  • Barik, A., S. Kumar Sen, G. Rajhans, and S. Raut. 2022. Purification and optimization of extracellular lipase from a novel strain kocuria flava Y4. International Journal of Analytical Chemistry 2022:1–10. doi:10.1155/2022/6403090.
  • Barros, A., A. Cardoso, A. Rodrigues, C. Silva, and A. Zill. 2019. Optimizing enzymatic dyeing of wool and leather. SN Applied Sciences 1 (10):1232. doi:10.1007/s42452-019-1241-6.
  • Begum, S., J. Wu, C. M. Takawira, and J. Wang. 2016. Surface modification of polyamide 6, 6 fabrics with an alkaline protease–subtilisin. Journal of Engineered Fibers and Fabrics 11 (1):64–74. doi:10.1177/155892501601100110.
  • Branco, R. V., M. L. Gutarra, J. M. Guisan, D. M. Freire, R. V. Almeida, and J. M. Palomo. 2015. Improving the thermostability and optimal temperature of a lipase from the hyperthermophilic archaeon Pyrococcus furiosus by covalent immobilization. BioMed Research International 2015:250532. doi:10.1155/2015/250532.
  • Bruins, M. E., A. E. M. Janssen, and R. M. Boom. 2000. Thermozymes and their applications. Applied Biochemistry and Biotechnology 90 (2):155–86. doi:10.1385/ABAB:90:2:155.
  • Cai, S. B., Z. H. Huang, X. Q. Zhang, Z. J. Cao, M. H. Zhou, and F. Hong. 2011. Identification of a keratinase-producing bacterial strain and enzymatic study for its improvement on shrink resistance and tensile strength of wool- and polyester-blended fabric. Applied Biochemistry and Biotechnology 163 (1):112–26. doi:10.1007/s12010-010-9021-1.
  • Chandra, P., S. R. Enespa, P. Arora, and P. K. Arora. 2020. Microbial lipases and their industrial applications: A comprehensive review. Microbial Cell Factories 19 (1):169. doi:10.1186/s12934-020-01428-8.
  • Cirillo, G., and Y. Nakazawa. 2020. Silk fibroin-based materials for catalyst immobilization. Molecules 25 (21):4929. doi:10.3390/molecules25214929.
  • Colombi, B., R. Valle, J. Valle, and J. Andreaus. 2021. Advances in sustainable enzymatic scouring of cotton textiles: Evaluation of different post-treatments to improve fabric wettability. Cleaner Engineering and Technology 4:100160. doi:10.1016/j.clet.2021.100160.
  • Cowan, D. A., J. B. Ramond, T. P. Makhalanyane, and P. De Maayer. 2015. Metagenomics of extreme environments. Current Opinion in Microbiology 25:97. doi:10.1016/j.mib.2015.05.005.
  • Demirkana, E., D. Kutb, T. Sevgia, M. Doganb, and E. Baygin. 2020. Investigation of effects of protease enzyme produced by Bacillus subtilis 168 E6-5 and commercial enzyme on physical properties of woolen fabric. The Journal of the Textile Institute 111 (1):26–35. doi:10.1080/00405000.2019.1624069.
  • Dijk, E. V., A. Hoogeveen, and S. Abeln. 2015. The hydrophobic temperature dependence of amino acids directly calculated from protein structures. PLoS Computational Biology 11 (5):e1004277. doi:10.1371/journal.pcbi.1004277.
  • Dumorné, K., D. C. Córdova, M. Astorga-Eló, and P. Renganathan. 2017. Extremozymes: A potential source for industrial applications. Journal of Microbiology and Biotechnology 27 (4):649–59. doi:10.4014/jmb.1611.11006.
  • El-Fiky, A. F., E. M. Khalil, S. Mowafi, R. A. Zaki, and H. El-Sayed. 2021. A novel approach towards removal of lipid barrier from wool fibres’ surface using thermophilic lipase. Journal of Natural Fibres 1–15. doi:10.1080/15440478.2021.1982835.
  • El-Gabry, L., G. El-Nouby, O. G. Allam, and H. El-Sayed. 2008. Effect of mechanical and enzymatic treatments on some properties of coarse wool. Journal of Natural Fibers 5 (4):461–75. doi:10.1080/15440470802472788.
  • El-Newashy, R. F., S. Mowafi, K. Haggag, M. Abou Taleb, and H. El-Sayed. 2019. Evaluation of comfort attributes of polyester knitted fabrics treated with sericin. Fibers and Polymers 20 (9):1992–2001. doi:10.1007/s12221-019-9275-3.
  • El-Sayed, H. 2006. Novel approach for antisetting of wool fabrics during dyeing. Coloration Technology 122 (1):57. doi:10.1111/j.1478-4408.2006.00004.x.
  • El-Sayed, H. 2021. A future insight into the chemistry of production of machine-washable wool. Journal of Natural Fibres accepted for publication, 1–13. doi:10.1080/15440478.2021.1993498.
  • El-Sayed, H., M. Abou Taleb, and S. Mowafi. 2021. Potential applications of textile wastes and by-products in production of textile auxiliaries. Egyptian Journal of Chemistry 64:4429–43. doi:10.21608/EJCHEM.2021.79398.3899.
  • El-Sayed, H., and E. El-Khatib. 2005. Modification of wool fabric using ecologically acceptable UV-assisted treatments. Journal of Chemical Technology and Biotechnology 80 (10):1111–17. doi:10.1002/jctb.1290.
  • El-Sayed, H., A. Kantouch, and L. El-Gabry. 2010. Effect of bio-carbonization of coarse wool on its dyeability. Indian Journal of Fibres and Textile Research 35:330–36.
  • El-Sayed, H., A. Kantouch, E. Heine, and H. H. 2002. Enzyme-based felt-resist treatment of wool. AATCC Review 1 (1):25–28.
  • El-Sayed, H., A. Kantouch, E. Heine, and H. Höcker. 2001. Developing a zero-AOX shrink-resist process for wool. Part 1: Preliminary results. Coloration Technology 117 (4):234–38. doi:10.1111/j.1478-4408.2001.tb00068.x.
  • El-Sayed, H., A. Kantouch, E. Heine, and H. Höcker. 2010. Studies on the reaction mechanism of wool with sodium monoperoxyphthalate. AATCC Review 10:57–63.
  • El-Sayed, W., R. Nofal, and H. El-Sayed. 2010. Use of lipoprotein lipase in the improvement of some properties of wool fabrics. Coloration Technology 126 (5):296–302. doi:10.1111/j.1478-4408.2010.00260.x.
  • Elleuche, S., C. Schroeder, K. Sahm, and G. Antranikian. 2014. Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Current Opinion in Biotechnology 29:116–23. doi:10.1016/j.copbio.2014.04.003.
  • Gacén, J., D. Cayuela, and I. Garcén. 2002. Rapid bleaching of wool with hydrogen peroxide. AATCC Review 2:28–31.
  • Gatti-Lafranconi, P., A. Natalello, S. Rehm, S. M. Doglia, J. Pleiss, and M. Lotti. 2010. Evolution of stability in a cold-active enzyme elicits specificity relaxation and highlights substrate-related effects on temperature adaptation. Journal of Molecular Biology 395 (1):155–66. doi:10.1016/j.jmb.2009.10.026.
  • Gonçalves, I., V. Herrero-Yniesta, I. Perales Arce, M. Escrigas Castañeda, A. Cavaco-Paulo, and C. Silva. 2014. Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. Ultrasonics Sonochemistry 21 (4):1535–43. doi:10.1016/J.ULTSONCH.2014.02.009.
  • Goswami, S., and M. Das. 2016. Extremophiles-a clue to origin of life and biology of other planets. Everymans Sci 51:17.
  • Gunjal Aparna, B., S. WaghmodeMeghmala, and N. Patil Neha. 2021. Role of extremozymes in bioremediation. Research Journal of Biotechnology 16:3.
  • Guo, C., C. Li, and D. Kaplan. 2020. Enzymatic degradation of bombyx mori silk materials: A review. Biomacromolecules 21 (5):1678–86. doi:10.1021/acs.biomac.0c00090.
  • Gursahani, Y. H., and S. G. Gupta. 2011. Decolourization of textile effluent by a thermophilic bacteria Anoxybacillusrupiensis. J Pet Environ Biotechnol 2:1–4.
  • Haggag, K., H. El-Sayed, and O. G. Allam. 2007. Degumming of Silk Using Microwave-Assisted Treatments. Journal of Natural Fibers 4 (3):1–22. doi:10.1300/J395v04n03_01.
  • Haggag, K., F. Kantouch, O. G. Allam, and H. El-Sayed. 2009. Improving printability of wool fabrics using sericin. Journal of Natural Fibers 6 (3):364–75. doi:10.1080/15440470902975292.
  • Haggag, K., A. A. Ragheb, I. Abd El-Thalouth, S. H. Nassar, and H. El-Sayed. 2013. A Review article on enzyme and their role in resist and discharge printing styles. Life Science Journal 10 (4):1646–54.
  • Hernández, G., and D. LeMaster. 2002. Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin. Biochemistry 40 (48):14384–91. doi:10.1021/bi0112560.
  • Ismail, S. A., M. Abou Taleb, M. A. Emran, S. Mowafi, A. M. Hashem, and H. El-Sayed. 2020. Benign felt-proofing of wool fibers using a keratinolytic thermophilic alkaline protease. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2020.1848721.
  • Jin, M., Y. Gai, X. Guo, Y. Hou, and R. Zeng. 2019. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: A mini review. Marine Drugs 17 (12):656. doi:10.3390/md17120656.
  • Jordanov, I., D. L. Stevens, A. Tarbuk, E. Magovac, S. Bischof, and J. C. Grunlan. 2019. Enzymatic modification of polyamide for improving the conductivity of water-based multilayer nanocoatings. ACS omega 4 (7):12028–35. doi:10.1021/acsomega.9b01052.
  • Jorquera, M. A., S. P. Graether, and F. Maruyama. 2019. Bioprospecting and biotechnology of extremophiles. Frontiers in Bioengineering and Biotechnology 7:204. doi:10.3389/fbioe.2019.00204.
  • Joyjamras, K., C. Chaotham, and P. Chanvorachote. 2022. Response surface optimization of enzymatic hydrolysis and ROS scavenging activity of silk sericin hydrolysates. Pharmaceutical Biology 60 (1):308–18. doi:10.1080/13880209.2022.2032208.
  • Kantouch, A., H. El-Sayed, and A. El-Sayed. 2007. Improvement of the felting and shrinking resistance of wool using environmentally acceptable treatments. Journal of the Textile Institute 98 (1):65–71. doi:10.1533/joti.2005.0249.
  • Kantouch, A., F. Kantouch, and H. El-Sayed. 2006. Surface modification of wool fabric for printing with acid and reactive dyes. Coloration Technology 122 (4):213–16. doi:10.1111/j.1478-4408.2006.00030.x.
  • Kantouch, A., E. M. Khalil, H. El-Sayed, and S. Mowafi. 2011. A novel application of ionic liquid in improvement of the felting resistance of wool. Egyptian Journal of Chemistry 54:481–93. doi:10.21608/EJCHEM.2011.1406.
  • Kantouch, A., W. M. Raslan, and H. El-Sayed. 2005. Effect of lipase pretreatment on the dyeability of wool fabric. Journal of Natural Fibers 2 (2):35–48. doi:10.1300/J395v02n02_03.
  • Karan, R., M. D. Capes, and S. DasSarma. 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aquatic Biosystems 8:1–15. doi:10.1186/2046-9063-8-1.
  • Kawai, F., T. Kawase, T. Shiono, H. Urakawa, S. Sukigara, C. Tu, and M. Yamamoto. 2017. Enzymatic hydrophilization of polyester fabrics using a recombinant cutinase cut190 and their surface characterization. Journal of Fiber Science and Technology 73 (1):8–18. doi:10.2115/fiberst.fiberst.2017-0002.
  • Krüger, A., C. Schäfers, C. Schröder, and G. Antranikian. 2018. Towards a sustainable biobased industry–highlighting the impact of extremophiles. New Biotechnology 40:144–53. doi:10.1016/j.nbt.2017.05.002.
  • Lee, C., S. Jang, and H. Chung. 2017. Improving the Stability of Cold-Adapted Enzymes by Immobilization. Catalysts 7 (12):112. doi:10.3390/catal7040112.
  • Lee, K. H., G. D. Kang, B. S. Shin, and Y. H. Park. 2005. Sericin-fixed silk fiber as an immobilization support of enzyme. Fibers and Polymers 6 (1):1–5. doi:10.1007/BF02875566.
  • Liu, J., Q. Wang, X. R. Fan, X. J. Sun, and P. H. Huang. 2013. Layer-by-layer self-assembly immobilization of catalases on wool fabrics. Applied Biochemistry and Biotechnology 169 (7):2212–22. doi:10.1007/s12010-013-0093-6.
  • MacElroy, R. D. 1974. Some comments on the evolution of extremophiles. Biosystems 6 (1):74–75. doi:10.1016/0303-2647(74)90026-4.
  • Martin, M., and M. Vandenbol. 2016. The hunt for original microbial enzymes: An initiatory review on the construction and functional screening of (meta) genomic libraries. Biotechnologie, Agronomie, Société et Environnement 20:523–32.
  • Matamá, T., F. Carneiro, C. Caparrós, G. Gübitz, and A. Cavaco-Paulo. 2007. Using a nitrilase for the surface modification of acrylic fibres. Biotechnology Journal 2:353–60. doi:10.1002/biot.200600068.
  • Mojsov, K. 2019. Enzymatic desizing, bioscouring and enzymatic bleaching of cotton fabric with glucose oxidase. The Journal of the Textile Institute 110 (7):1032–41. doi:10.1080/00405000.2018.1535240.
  • Mojsov, K., A. Janevski, D. Andronikov, S. Jordeva, I. I. Gaber, and I. Ignjatov. 2020. Enzymatic treatment of wool fabrics with lipase in the improvement of some properties of wool fabric. Tekstilna Industrija 68 (1):4–11. doi:10.5937/tekstind2001004M.
  • Moon, S., J. Kim, J. Koo, and E. Bae. 2019. Structural and mutational analyses of psychrophilic and mesophilic adenylate kinases highlight the role of hydrophobic interactions in protein thermal stability. Structural Dynamics 6 (2):024702. doi:10.1063/1.5089707.
  • More, S. V., S. Chavan, and A. A. Prabhune. 2018. Silk degumming and utilization of silk sericin by hydrolysis using alkaline protease from beauveria Sp. (MTCC 5184): A Green Approach. Journal of Natural Fibers 15 (3):373–83. doi:10.1080/15440478.2017.1330718.
  • Mowafi, S., M. Abou Taleb, and H. El-Sayed. 2018. Towards analytical stripes for detection of iron III cations in domestic water using protein biopolymers. Journal of Cleaner Production 202:45–53. doi:10.1016/j.jclepro.2018.08.141.
  • Mowafi, S., H. Mashaly, and H. El-Sayed. 2020. Towards water-saving textile wet processing. part 1: Scouring and dyeing. Egyptian Journal of Chemistry 63:3343–53. doi:10.21608/EJCHEM.2020.27952.2602.
  • Mukhopadhyay, A., A. K. Dasgupta, and K. Chakrabarti. 2015. Enhanced functionality and stabilization of a cold active laccase using nanotechnology based activation-immobilization. Bioresource Technology 179:573–84. doi:10.1016/j.biortech.2014.12.070.
  • Nerurkar, M., M. Joshi, and R. Adivarekar. 2015. Bioscouring of cotton using lipase from marine bacteria Bacillus sonorensis. Applied Biochemistry and Biotechnology 175 (1):253–65. doi:10.1007/s12010-014-1259-6.
  • Nigam, P. S. 2013. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3 (4):597–611. doi:10.3390/biom3030597.
  • Park, J., C. Kang, S. Won, K. Oh, and J. Yoon. 2020. Characterization of a novel moderately thermophilic solvent-tolerant esterase isolated from a compost metagenome library. Frontiers in Microbiology 10:3069. doi:10.3389/fmicb.2019.03069.
  • Picotti, P., A. Marabotti, A. Negro, V. Musi, B. Spolaore, M. Zambonin, and A. Fontana. 2004. Modulation of the structural integrity of helix F in apomyoglobin by single amino acid replacements. Protein Science: A Publication of the Protein Society 13 (6):1572–85. doi:10.1110/ps.04635304.
  • Raddadi, N., A. Cherif, D. Daffonchio, M. Neifar, and F. Fava. 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Applied Microbiology and Biotechnology 99 (19):7907–13. doi:10.1007/s00253-015-6874-9.
  • Rahman, M., A. Bhowmik, S. Das, K. Chowhan, and T. Biswas. 2020. Green degumming of silk by enzyme extracted from natural sources. Journal of Materials Science and Chemical Engineering 8 (8):30–40. doi:10.4236/msce.2020.88003.
  • Raja, A. S. M., and G. Thilagavathi. 2008. Comparative study on the effect of acid and alkaline protease enzyme treatments on wool for improving handle and shrink resistance. The Journal of the Textile Institute 101 (9):823–34. doi:10.1080/00405000902829689.
  • Reed, C. J., H. Lewis, E. Trejo, V. Winston, and C. Evilia. 2013. Protein adaptations in archaeal extremophiles. Archaea 2013:1–14. doi:10.1155/2013/373275.
  • Rehman, M. F., A. Shaeer, A. Batool, and M. Aslam. 2022. Structure-function relationship of extremozymes. In Microbial Extremozymes, pp. 9–30. Elsevier, Academic Press. doi:10.1016/B978-0-12-822945-3.00023-3.
  • Rigoldi, F., S. Donini, A. Redaelli, E. Parisini, and A. Gautieri. 2018. Engineering of thermostable enzymes for industrial applications. APL Bioengineering 2 (1):011501. doi:10.1063/1.4997367.
  • Sankarraj, N., and G. Nallathambi. 2018. Enzymatic biopolishing of cotton fabric with free/immobilized cellulase. Carbohydrate Polymers 191:95–102. doi:10.1016/J.CARBPOL.2018.02.067.
  • Sarmiento, F., R. Peralta, and J. M. Blamey. 2015a. Cold and hot extremozymes: Industrial relevance and current trends. Frontiers in Bioengineering and Biotechnology 3:148. doi:10.3389/fbioe.2015.00148.
  • Sarmiento, F., R. Peralta, and J. M. Blamey. 2015b. Cold and hot extremozymes: Industrial relevance and current trends. Frontiers in Bioengineering and Biotechnology 3:148. doi:10.3389/fbioe.2015.00148.
  • Schumacher, K., E. Heine, and H. Höcker. 2001. Extremozymes for improving wool properties. Journal of Biotechnology 89 (2–3):281–88. doi:10.1016/s0168-1656(01)00314-5.
  • Sellek, G. A., and J. B. Chaudhuri. 1999. Biocatalysis in organic media using enzymes from extremophiles. Enzyme and Microbial Technology 25 (6):471. doi:10.1016/S0141-0229(99)00075-7.
  • Senthilkumar, P., C. Vigneswaran, and P. Kandhavadivu. 2015. A novel approach in single stage combined bleaching and protease enzyme treatments on wool fabrics. Fibers and Polymers 16 (2):397–403. doi:10.1007/s12221-015-0397-y.
  • Siddiqui, K. S., D. M. Parkin, P. M. Curmi, D. D. Francisci, A. Poljak, K. Barrow, and R. Cavicchioli. 2009. A novel approach for enhancing the catalytic efficiency of a protease at low temperature: Reduction in substrate inhibition by chemical modification. Biotechnology and Bioengineering 103 (4):676–86. doi:10.1002/bit.22300.
  • Singh, O. V., and P. Gabani. 2011. Extremophiles: Radiation resistance microbial reserves and therapeutic implications. Journal of Applied Microbiology 110 (4):851. doi:10.1111/j.1365-2672.2011.04971.x.
  • Stepankova, V., S. Bidmanova, T. Koudelakova, Z. Prokop, R. Chaloupkova, and J. Damborsky. 2013. Strategies for stabilization of enzymes in organic solvents. Acs Catalysis 3 (12):2823–36. doi:10.1021/cs400684x.
  • Sysoev, M., S. W. Grötzinger, D. Renn, J. Eppinger, M. Rueping, and R. Karan. 2021. Bioprospecting of novel extremozymes from prokaryotes—the advent of culture-independent methods. Frontiers in Microbiology 12. doi:10.3389/fmicb.2021.630013.
  • Varland, S., C. Osberg, and T. Arnesen. 2015. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects. Proteomics 15 (14):2385–401. doi:10.1002/pmic.201400619.
  • Vieille, C., and G. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews 65 (1):1–43. doi:10.1128/MMBR.65.1.1-43.2001.
  • Wang, N., Y. Xu, D. N. Lu, and J. H. Xu. 2004. Enzymatic surface modification of acrylic fiber. AATCC Review 4 (9):28–30.
  • Wang, R., Y. Zhu, Z. Shi, W. Jiang, X. Liu, and Q. Q. Ni. 2018. Degumming of raw silk via steam treatment. Journal of Cleaner Production 203:492–97. doi:10.1016/j.jclepro.2018.08.286.
  • Wiltschi, B., T. Cernava, A. Dennig, M. G. Casas, M. Geier, S. Gruber, T. Wriessnegger, P. Heidinger, E. Herrero Acero, and R. Kratzer. 2020. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances 40:107520. doi:10.1016/j.biotechadv.2020.107520.
  • Zhang, J., Y. Qiao, X. Zu, H. Zheng, S. Gao, and L. Zheng. 2019. Cleaner strategy for the scouring and bleaching of flax rove with enzymes in supercritical carbon dioxide. Journal of Cleaner Production 210:759–66. doi:10.1016/J.JCLEPRO.2018.11.086.
  • Zhang, Y. Q., M. L. Tao, W. D. Shen, Y. Z. Zhou, Y. Ding, Y. Ma, and W. L. Zhou. 2004. Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials 25 (17):3751–59. doi:10.1016/j.biomaterials.2003.10.019.
  • Zhu, L., J. Lin, L. Pei, Y. Luo, D. Li, and Z. Huang. 2022. Recent advances in environmentally friendly and green degumming processes of silk for textile and non-textile applications. Polymers 14 (4):659. doi:10.3390/polym1404065.
  • Zhu, Y., W. Zhou, P. Xiao, Y. Zhao, X. Guan, Z. Chang, Q. Wang, and Q. Wang. 2018. Process optimization for pre-treatment and dyeing one bath of viscose fabric with enzyme in cold pad-batch. The Journal of the Textile Institute 109 (12):1554–59. doi:10.1080/00405000.2018.1432188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.