375
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Durable Flame-retardant Finishing of Cotton with a Reactive Phosphorus-based Environmental Flame Retardant

, , &
Pages 15128-15138 | Published online: 05 Jul 2022

References

  • Alongi, J., M. Ciobanu, and G. Malucelli. 2011a. Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes. Carbohydrate Polymers 85(3):599–608. Elsevier Ltd. doi:10.1016/j.carbpol.2011.03.024.
  • Alongi, J., M. Ciobanu, and G. Malucelli. 2011b. Sol-Gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability. Cellulose 18 (1):167–77. doi:10.1007/s10570-010-9470-2.
  • Alongi, J., and G. Malucelli. 2012. State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles. Journal of Materials Chemistry 22 (41):21805–09. doi:10.1039/c2jm32513f.
  • Castellano, A., C. Colleoni, G. Iacono, A. Mezzi, M. Rosaria Plutino, G. Malucelli, and G. Rosace. 2019. Synthesis and characterization of a phosphorous/nitrogen based sol-gel coating as a novel halogen- and formaldehyde-free flame retardant finishing for cotton fabric. Polymer Degradation and Stability 162:148–59. Elsevier Ltd. doi:10.1016/j.polymdegradstab.2019.02.006.
  • Chang, S., R. P. Slopek, B. Condon, and J. C. Grunlan. 2014. Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Industrial and Engineering Chemistry Research 53 (10):3805–12. doi:10.1021/ie403992x.
  • Chavali, K. S., D. A. Pethsangave, K. C. Patankar, R. V. Khose, P. H. Wadekar, S. Maiti, R. V. Adivarekar, and S. Some. 2020. Graphene-based intumescent flame retardant on cotton fabric. Journal of Materials Science 55(29):14197–210. Springer US. doi:10.1007/s10853-020-04989-6.
  • Cheng, X. W., R. Cheng Tang, J. Ping Guan, and S. Qiang Zhou. 2020. An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach. Progress in Organic Coatings 141:105539. September 2019. Elsevier: 105539. doi:10.1016/j.porgcoat.2020.105539.
  • Dong, C., L. Zhou, and F. Zhang. 2015. Preparation and properties of cotton fabrics treated with a novel guanidyl- and phosphorus-containing polysiloxane antimicrobial and flame retardant. Materials Letters 142:35–37. Elsevier. doi:10.1016/j.matlet.2014.11.138.
  • Dong, C., H. Pengshuang, L. Zhou, S. Wang, S. Sui, J. Liu, L. Zhang, and P. Zhu. 2018. Preparation and properties of cotton fabrics treated with a novel antimicrobial and flame retardant containing triazine and phosphorus components. Journal of Thermal Analysis and Calorimetry 131(2):1079–87. Springer Netherlands. doi:10.1007/s10973-017-6604-x.
  • Ghoranneviss, M., and S. Shahidi. 2014. Flame retardant properties of plasma pretreated/metallic salt loaded cotton fabric before and after direct dyeing. Journal of Fusion Energy 33 (2):119–24. doi:10.1007/s10894-013-9642-9.
  • Gou, T., W. Xin, Q. Zhao, S. Chang, and P. Wang. 2021. Novel phosphorus/nitrogen-rich oligomer with numerous reactive groups for durable flame-retardant cotton fabric. In Cellulose, 0123456789. Netherlands: Springer. doi:10.1007/s10570-021-03980-x.
  • Jia, Y., Y. Lu, G. Zhang, Y. Liang, and F. Zhang. 2017. Facile synthesis of an eco-friendly nitrogen-phosphorus ammonium salt to enhance the durability and flame retardancy of cotton. Journal of Materials Chemistry A 5 (20):9970–81. doi:10.1039/c7ta01106g.
  • Jiang, D., C. Sun, Y. Zhou, H. Wang, X. Yan, H. Qingliang, J. Guo, and Z. Guo. 2015. Enhanced flame retardancy of cotton fabrics with a novel intumescent flame-retardant finishing system. Fibers and Polymers 16 (2):388–96. doi:10.1007/s12221-015-0388-z.
  • Kaur, I., P. Bhati, and B. Sharma. 2014. Antibacterial, flame retardant, and physico-chemical properties of cotton fabric graft copolymerized with a binary mixture of acrylonitrile and 4-vinylpyridine. Journal of Applied Polymer Science 131 (13):1–14. doi:10.1002/app.40415.
  • Lijin, X., W. Wang, and Y. Dan. 2017. Durable flame retardant finishing of cotton fabrics with halogen-free organophosphonate by uv photoinitiated thiol-ene click chemistry. Carbohydrate Polymers 172:275–83. Elsevier Ltd. doi:10.1016/j.carbpol.2017.05.054.
  • Ling, C., and L. Guo. 2020. Preparation of a flame-retardant coating based on solvent-free synthesis with high efficiency and durability on cotton fabric. Carbohydrate Polymers 230:115648. September 2019. Elsevier. doi:10.1016/j.carbpol.2019.115648.
  • Liu, Z., X. Miaojun, Q. Wang, and L. Bin. 2017. A novel durable flame retardant cotton fabric produced by surface chemical grafting of phosphorus- and nitrogen-containing compounds. Cellulose 24(9):4069–81. Springer Netherlands. doi:10.1007/s10570-017-1391-x.
  • Liu, S., C. Wan, Y. Chen, R. Chen, F. Zhang, and G. Zhang. 2020. A novel high-molecular-weight flame retardant for cotton fabrics. Cellulose 27(6):3501–15. Springer Netherlands. doi:10.1007/s10570-020-03020-0.
  • Makhlouf, G., A. Abdelkhalik, and H. Ameen. 2021. Synthesis of a novel highly efficient flame-retardant coating for cotton fabrics with low combustion toxicity and antibacterial properties. Cellulose 28(13):8785–806. Springer Netherlands. doi:10.1007/s10570-021-04076-2.
  • Nabipour, H., X. Wang, M. Ziaur Rahman, L. Song, and H. Yuan. 2020. An environmentally friendly approach to fabricating flame retardant, antibacterial and antifungal cotton fabrics via self-assembly of guanazole-metal complex. Journal of Cleaner Production 273:122832. Elsevier Ltd: 122832. doi:10.1016/j.jclepro.2020.122832.
  • Pan, Y., L. Liu, X. Wang, L. Song, and H. Yuan. 2018, March. Hypophosphorous acid cross-linked layer-by-layer assembly of green polyelectrolytes on polyester-cotton blend fabrics for durable flame-retardant treatment. ( Elsevier) Carbohydrate Polymers 201:1–8. doi: 10.1016/j.carbpol.2018.08.044.
  • Ping, L., C. Liu, X. Ying Jun, Z. Ming Jiang, Y. Liu, and P. Zhu. 2020. Novel and eco-friendly flame-retardant cotton fabrics with lignosulfonate and chitosan through LbL: Flame retardancy, smoke suppression and flame-retardant mechanism. Polymer Degradation and Stability 181. Elsevier Ltd: 109302. doi:10.1016/j.polymdegradstab.2020.109302.
  • Price, D., A. R. Horrocks, M. Akalin, and A. A. Faroq. 1997. Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. Journal of Analytical and Applied Pyrolysis 40–41:511–24. doi:10.1016/S0165-2370(97)00043-0.
  • Sun, L., H. Wang, L. Wennan, J. Zhang, Z. Zhang, L. Zhou, P. Zhu, and C. Dong. 2021. Preparation, characterization and testing of flame retardant cotton cellulose material: flame retardancy, thermal stability and flame-retardant mechanism. Cellulose 28(6):3789–805. Springer Netherlands. doi:10.1007/s10570-020-03632-6.
  • Veen, I. V. D., and J. de Boer. 2012. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88(10):1119–53. Elsevier Ltd. doi:10.1016/j.chemosphere.2012.03.067.
  • Wei, D., C. Dong, Z. Chen, J. Liu, L. Qun, and L. Zhou. 2019. A novel cyclic copolymer containing si/p/n used as flame retardant and water repellent agent on cotton fabrics. Journal of Applied Polymer Science 136 (13):1–8. doi:10.1002/app.47280.
  • Zhang, T., H. Yan, M. Peng, L. Wang, H. Ding, and Z. Fang. 2013. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 5 (7):3013–21. doi:10.1039/c3nr34020a.
  • Zhang, F., Y. Lu, C. Wan, P. Tian, M. Liu, and G. Zhang. 2020. A bio-resourced mannitol phospholipid ammonium reactive flame retardant for cotton with efficient antiflaming and durability. Cellulose 27 (8):4803–15. doi:10.1007/s10570-020-03064-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.